Seleção de atributos contábeis na previsão de insolvência de empresas brasileiras – Uma comparação de abordagens
Palabras clave:
Seleção de atributos, Previsão de insolvência, Índices econômico-financeiros, Data mining.Resumen
Previsão de insolvência tem sido um tema de estudo que tem ganho muita atenção em análise de negócios devido à importância de informações precisas e oportunas nas decisões estratégicas de negócios. Isto porque a incorreta tomada de decisão nas instituições pode gerar dificuldades financeiras, além de causar grandes custos sociais que afetam os proprietários ou acionistas, gestores, trabalhadores, credores, fornecedores, clientes, comunidade, governo, etc. Como resultado, a previsão de falência tem sido uma das tarefas mais desafiadoras e um tópico de pesquisa importante na contabilidade, finanças, computação, e as técnicas de mineração de dados têm sido aplicadas para resolver problemas de previsão de falências. Seleção de atributos é uma etapa importante para selecionar dados mais representativos de um conjunto de índices contábeis obtidos a partir de demonstrativos financeiros de empresas brasileiras; esta etapa visa melhorar o desempenho da previsão final. O objetivo principal deste artigo é comparar três abordagens de seleção de atributos, filtro, wrapper e análise de componentes principais, em dados selecionados para elaboração de modelos de previsão de insolvência. Esta pesquisa é de natureza empírica, descritiva e quantitativa, compreendendo as empresas classificadas no SERASA e na BOVESPA como insolventes no período de 2005 a 2007. Neste trabalho, demonstrou-se, para a amostra utilizada, que a abordagem wrapper é a mais eficiente; ela obteve os melhores resultados de classificação nas técnicas de regressão logística (89,88%), árvore de decisão (93,45%) e máquina de vetor suporte (97,02%).
Palavras-chave: seleção de atributos, previsão de insolvência, índices contábeis, mineração de dados.
Descargas
Publicado
Número
Sección
Licencia
I grant the journal BASE the first publication of my article, licensed under Creative Commons Attribution license (which allows sharing of work, recognition of authorship and initial publication in this journal).
I confirm that my article is not being submitted to another publication and has not been published in its entirely on another journal. I take full responsibility for its originality and I will also claim responsibility for charges from claims by third parties concerning the authorship of the article.
I also agree that the manuscript will be submitted according to the journal’s publication rules described above.