
Scientia
Interdisciplinary Studies in Computer Science
20(2): 107-118, July/December 2009
© 2009 by Unisinos – doi: 10.4013/sct.2009.20.2.04

Co ntinuum software infrastructure for ubiquitous
computing: A service-based approach

Cristiano Costa1, Felipe Kellermann1, Rodolfo Antunes1, Jorge Barbosa1,
Adenauer Yamin2, Cláudio Geyer3

1PIPCA, Universidade do Vale do Rio dos Sinos
Av. Unisinos 950, São Leopoldo, 93022-000, Brasil

2PPGINF, Universidade Católica de Pelotas
Rua Félix da Cunha 412, Pelotas, 96010-000, Brasil

3PPGC, Universidade Federal do Rio Grande do Sul
Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brasil

cac@unisinos.br, {felipek, rsantunes}@gmail.com, jbarbosa@unisinos.br,
adenauer@ucpel.br, geyer@inf.ufrgs.br

Abstract
The latest technological advances, which introduced innovative and more affordable devices, have
contributed to boost the practical application of research in the field of ubiquitous computing (ubicomp).
For the development of applications in this area, we need an adequate software infrastructure. In
order to do so, we have proposed Continuum, an infrastructure based on service-oriented architecture
(SOA), making use of framework and middleware, and employing a redefinition of follow-me semantics.
In this redefined vision, users can go anywhere carrying the data and application they want, which
they can use in a seamlessly integrated fashion with the real world. In this article, we focus on the
description of the service-based architecture proposed for Continuum. The proposal widens the
web services standards to support the mobility of services, allowing them to be deployed, copied, or
moved. Besides, the abstraction provided enables the adaptation of legacy applications as Continuum
pluggable services. We conduct some experimental analysis, using case study methodology. Based on
these assessments, we present lessons learned and draw the conclusion of our work.

KEY WORDS: software infrastructure, middleware, web services, service oriented architecture,
ubiquitous computing.

Resumo
Infraestrutura de software Continuum para a computação ubíqua: uma abordagem baseada em
serviço. Os mais recentes avanços tecnológicos, com a introdução de dispositivos inovadores e mais
baratos, contribuem para o aumento da aplicação prática das pesquisas na área de computação ubíqua
(ubicomp). Para o desenvolvimento de aplicativos nessa área, é necessária uma infraestrutura de
software adequada. Para atingir esse objetivo, esse artigo propõe o Continuum, uma infraestrutura
baseada na arquitetura orientada a serviços (SOA), fazendo uso de framework e middleware. Além
disso, a arquitetura emprega uma visão redefinida da semântica siga-me, na qual usuários podem ir
aonde quiserem carregando os dados e aplicativos desejados, utilizando-os de forma integrada com o
mundo real. Nesse artigo, é dado foco para a descrição da arquitetura orientada a serviços proposta para
o Continuum. A proposta amplia os padrões de serviços web para suportar a mobilidade de serviços,
permitindo que eles sejam instalados, copiados ou movidos. Adicionalmente, a abstração fornecida
permite a adaptação de aplicações legadas como serviços plugáveis do Continuum. Algumas análises
experimentais foram conduzidas, usando a metodologia de estudo de caso. Baseada nessas avaliações,
algumas lições que foram aprendidas são apresentadas e algumas conclusões do trabalho são definidas.

PALAVRAS-CHAVE: infraestrutura de software, middleware, serviços web, arquitetura
orientada a serviços, computação ubíqua.

Volume 20 • nº 2 • July/December 2009

CO NTINUUM SOFTWARE INFRASTRUCTURE FOR UBIQUITOUS COMPUTING: A SERVICE-BASED APPROACH108

1 Introduction

Recent technological advances, along with the incre-
asing availability of many mobile devices, highlight three
main characteristics that we believe should continue to
widen and consolidate those changes in the next years: (i)
the emergence of new companies and products in the mobile
computing market, providing new devices, technologies, and
paradigms (for instance, the iPhone); (ii) the many forms
of communication provided by these products, as well as
the availability of ubiquitous connectivity; (iii) the growing
focus on the development of applications for these new
devices, as for example those offered by App Store (Apple)
and Android Market (Google), and on application infras-
tructures, such as App Engine (Google). Together, these
characteristics result in an environment where devices, with
different software and architectures, are constantly connec-
ted and, hence, should benefit from the integration between
the heterogeneous applications (or components) they use.

This is the beginning of the ubiquitous computing
(ubicomp) reality, which allows people to use computatio-
nal resources in a transparent manner, integrated with the
environment (Weiser, 1991). In this vision, people access
their data and applications wherever they go and however
they move. To consolidate the ubicomp area, many challen-
ges should still be addressed (Costa et al., 2008). The use of
software infrastructures, with middleware and frameworks,
has been advocated as the approach to deal with many di-
fferent ubicomp-related issues (Costa et al., 2008; Modahl
et al., 2006). To accomplish this goal, our work focuses on
the proposal of a service-based software infrastructure for
ubiquitous computing, named Continuum.

Continuum proposes a redefinition of the original
follow-me semantics concept, which states that applications
and data go along with users, providing a virtual environ-
ment and adapting to the current context (Augustin et al.,
2004). In our redefined vision, users can go anywhere
carrying the data and application they want, which they can
use in a seamlessly integrated fashion with the real world.
This notion differs from the original one in two aspects:
first, there is no idea of virtual user environment but rather
the idea of using the actual environment. Secondly, the
user’s session is not sustained for all applications and data;
instead, we propose that users choose which applications
and data they want to carry with them. We believe that with
this new approach, we break with the idea of replicating
the user desktop session in every scenario and increase
the applicability of the solution to more general situations.

The Continuum software infrastructure makes use of
pluggable services, built according to web services open
standards (Papazoglou, 2008). To provide this support, we
have developed a distributed service architecture, named
CoDSA (Continuum Distributed Service Architecture),

offering the possibility of deploying, migrating, or re-
plicating services. We have also defined an abstraction
of a container for applications (CoApp) wrapping all the
resources, dependencies, and executable codes needed.

The focus of this article is on describing the dis-
tributed architecture model of Continuum, detailing
the CoDSA and the CoApp container. We also show
some services developed in Continuum to support this
architecture, namely Executor and Service Manager.
Continuum is a broader proposal not limited by these
features. Thus, other fronts in the project are also under
development, such as the context awareness subsystem,
the formal representation of context using an ontology,
and the communication services.

The article is organized as follows. In Section, 2 we
make a brief analysis of related works. Section 3 describes
the Continuum software infrastructure, showing the main
layers and components. The distributed service architecture
of Continuum is then described at Section 4. The next section
details the modeling of this architecture, highlighting the
way in which applications or components are represented
and managed as services. In Section 6, we present the imple-
mentation phase and analysis of results. Finally, in Section
7, we show the conclusion and suggest some future works.

2 Related work

Some previous works propose the replication of web
services. In Juszczyk et al. (2006), the authors present an
approach for replicating and synchronizing services to be
used with ad-hoc networks, although the proposal is generic
enough to be employed in other areas. Their article describes
a method called hot deployment. It allows the installation of
services at running servers without the need of interrupting
the execution (Juszczyk et al., 2006). The focus of their
solution is on dependability, and more specifically, on high
availability. Another approach, with the same aim, is sho-
wn in Moser et al. (2006). In the article, some alternatives
for replicating web services are presented, but not actually
implemented. Besides, the article specifically considers the
J2EE Application Server and the Tomcat container.

Web services migration has been also tackled be-
fore. In Hao et al. (2006), the authors suggest a way of
dynamically migrating web services to overcome perfor-
mance problems in real-time applications. Moreover, they
offer a decision maker to determine when the migration
should occur. Each service that can migrate from one
node to another is called a weblet. The authors have also
created an engine to support the migration and execution
of web services (Hao et al., 2006).

Although there are some projects that deal with
replication and migration of web services, as far as we

Scientia – Interdisciplinary Studies in Computer Science

CRISTIANO COSTA, FELIPE KELLERMANN, RODOLFO ANTUNES, JORGE BARBOSA, ADENAUER YAMIN, CLÁUDIO GEYER 109

know, none of these works is in the context of ubicomp.
Nevertheless, the use of web services, and more generally
of Service Oriented Architecture (SOA), is common in
this area. Here we highlight two recent articles.

In the Mobile SOA project, the researchers propose
a web services extension to be used in lightweight mobile
devices (Tergujeff et al., 2007). Their approach uses the
J2ME web services specification in an MIDP platform.
The project is at an initial phase, and still presents many
additional challenges (Tergujeff et al., 2007).

COCOA (Mokhtar et al., 2007), on the other hand, is
a more robust proposal applying web services in the area
of ubicomp. The project allows the dynamic integration of
available services to the execution of user tasks. Furthermo-
re, the authors consider QoS requirements in this process.

Web services are the most common implementation
for SOA because they use XML for data and employ
platform-neutral communications (Howerton, 2007). The
idea of obtaining functionalities as network-delivered ser-
vices corresponds to a model named Software as a Service
(SaaS). In Anerousis and Mohindra (2006), the authors have
defended the use of SaaS for ubicomp environments, and
stated that the most significant challenges in this field are
how to handle periodic disconnections and how to address
differences in devices. They propose the use of adaptive
services to solve the latter challenge and the caching of
data on devices, enabling offline operations to tackle the
former problem. This vision adheres to our proposition.

3 Continuum software infrastructure

Continuum is a service-based software infrastructu-
re for ubiquitous computing, integrating framework and
middleware, as defined in Bernstein (1996), and addres-
sing many different challenges of ubicomp. Continuum
software infrastructure is an evolution of ISAM project

(Augustin et al., 2004) based partially on the requirements
offered by a comprehensive architecture model, presented
in Costa et al. (2008), and partially on context awareness
considerations. This latter aspect is not the focus of this
particular article, and it will be detailed in another one.

The Continuum framework deals with design time
abstractions needed for the implementation of ubiqui-
tous software. It is intended to help the development
of ubiquitous applications using middleware services.
Moreover, the framework simplifies the use of the un-
derling middleware services. There are three elements
that constitute the framework: Application Programming
Interfaces (APIs), User Interfaces (UIs), and tools. The
APIs specializes the interface and simplifies the use of
services offered by the middleware, providing some
additional private services. UIs, on the other hand,
provide a look and feel adapted to the platform being
used for ubiquitous application design. Finally, the tools
represent a set of generic applications to simplify the use
of the framework. For instance, Execution Profiler is a
tool to assist in the parameterization and deployment of
services in the infrastructure.

The Continuum middleware hides environment
complexity, isolating applications from explicit mana-
gement of protocols, distributed memory access, data
replication, communication faults etc. It also minimi-
zes heterogeneity problems related to architectures,
operating systems, network technologies, and even
programming languages, promoting the interoperation
of them. The middleware offers a set of pluggable servi-
ces, which as the name implies can be loaded and used
on demand, supplying the main functionalities during
execution. These services are organized in subsystems,
which are not an element in itself, but rather a group
of related services.

Figure 1 illustrates the proposed development pro-
cess using Continuum. The left side of the figure shows

Figure 1. Continuum development process.

Volume 20 • nº 2 • July/December 2009

CO NTINUUM SOFTWARE INFRASTRUCTURE FOR UBIQUITOUS COMPUTING: A SERVICE-BASED APPROACH110

the environment and the support during design time.
It comprises an Integrated Development Environment
(IDE) for the implementation of ubiquitous applica-
tions. The IDE encompasses a language API, a set of
development tools (compiler, editor, linker, debugger
etc.), the Continuum framework, and other application
frameworks as needed. In this environment, we can build
the ubiquitous application source code. The right side
of the figure presents, in general terms, the components
required during execution: the application binaries, the
Continuum framework and middleware, and the platform
necessary to execution (network, computer, operating
system and additional running support).

We identify this runtime environment as Con-
tinuum software architecture. The proposition for
Continuum software architecture is presented in Figure
2. The architecture is divided in layers: foundation,
middleware (subsystems and pluggable services), and
user space. The foundation comprises the execution
and support environment, including the network, the
operating system, and the language runtime support.
For instance, if the application is developed in Java,
this language support includes the Java Virtual Machi-
ne (JVM). The middleware is divided in subsystems,
which are further divided into services. The pluggable
services constitute the core of Continuum middleware,
providing support for the execution of ubiquitous ap-
plications. Finally, the user space layer contains user
applications and the Continuum framework support.
Applications can use the foundation layer directly and
also interact with the middleware.

Continuum services are based on SOA, and were
planned as web services. Because of this characteristic,

Continuum architecture inherit all the advantages of
the SOA model, such as the enhanced interoperability
among heterogeneous environments, the decoupling of
the architecture from the hardware and low-level software
infrastructure, and the independence from any type of
proprietary technology, device or manufacturer.

The services in the Distributed Execution subsys-
tem are responsible for the distributed processing support
and communication in Continuum. In this component,
applications are managed, services are deployed on
demand, and then copied or migrated among nodes.
Furthermore, this subsystem keeps the physical organi-
zation of the environment, by storing attributes related
to the management of the infrastructure, i.e. resources,
users, and applications.

The Context Awareness subsystem groups the servi-
ces that deal with a variety of contextual information. It
provides a formal representation for context, in an inde-
pendent application manner. The subsystem also considers
user preferences (requirements that vary from user to user
and over time). The Context Awareness subsystem is also
in charge of storing context, along with points in time
at which these data have been created, and distributing/
localizing them.

Another subsystem is Adaptation Management. Not
only does it target at the adaptation process itself, but also
at the management of the adaptation process, which inclu-
des agility aspects and the maintenance of system stability
(Silva et al., 2008). On one side, we have to address the
delay between the perception of a new context state and
the execution of actions to adapt the system to this new
environment condition; this process demands agility. On
the other hand, the execution of adaptation actions has

Figure 2. Continuum software architecture.

Scientia – Interdisciplinary Studies in Computer Science

CRISTIANO COSTA, FELIPE KELLERMANN, RODOLFO ANTUNES, JORGE BARBOSA, ADENAUER YAMIN, CLÁUDIO GEYER 111

a computational cost and competes with the application
itself. In an extreme case, adaptation actions can be very
frequent, leading the system to a state of instability, in
which the majority of resources is consumed by the exe-
cution of these adaptation actions. This requires stability
maintenance in the environment.

Finally, we have the User Interaction subsystem.
Services in the subsystem are in charge of reinforcing
invisibility issues, giving special consideration to user
attention and intent. The main features of this subsystem
are to provide ubiquitous access to files (Frainer et al.,
2007), to deal with trust and privacy, to supply the choice
of an interface, and to help with invisibility issues, more
specifically to ensure user attention, to meet user intent,
and to cause minimal user intervention. In the latter
functionality, interfaces suitable to each type of device
or environment could be selected. To accomplish this,
during design time we can define abstract user interfaces
and predict different types of interaction, with the aid of
the framework, so that the decision of which interface to
use can be postponed to execution-time.

As already pointed out, these subsystems are only
a conceptual organization; in practice, Continuum uses
a service-based organization, which selects services
on demand, depending on what functionalities the
applications need. The framework will provide an in-
terface that helps the selection of these services. These
pluggable services add an adaptive behavior, which is
important due to the high heterogeneity of the many
different resources. In addition, Continuum proposes
the use of Service-Oriented Computing - SOC (Papazo-
glou and Georgakopoulos, 2003). In SOC, the service
layer follows the service-oriented architecture (SOA).
The purpose of SOA is to support critical applications,
which require the management and deployment of ser-
vices and applications; it is also targeted at providing
support for open services (Papazoglou and Georgako-
poulos, 2003). The application of SOC on the web is
obtained by the use of web services. SOC, SOA, and
web services create a general interface, which makes
interaction easier in Continuum; in a more ad hoc
approach, those elements enable many applications to
make effortless use of its services.

Besides being selected on demand, the services are
context adaptive, i.e., the infrastructure is able to use the
implementation that is better tuned to each device. Fur-
thermore, we reduce resource consumption by selecting
only services that are actually necessary. Such scheme is
possible because services are defined by their semantics and
interface, instead of a specific implementation. Moreover,
it is easy to add other services, since we make use of SOA
architecture. In the next section we describe the architecture
that allows the support of these distributed services.

4 CoDSA: Distributed Service
 Architecture

This section describes the Continuum Distributed
Service Architecture (CoDSA), which is a SOA that uses
web services for communication. CoDSA manages the
pluggable services in Continuum software infrastructure.

Each pluggable service in Continuum is defined
as a web service. These services are reachable in the
infrastructure from a node called CoDirectory. For
scalability purposes, the physical resources, hereafter
referred simply as nodes, are organized in a cell topo-
logy, loosely based on our previous ISAM pervasive
environment (Augustin et al., 2004). Each cell, named
CoCell in the infrastructure, has an associated CoDirec-
tory and represents a (physical or abstract) place. The
degree of abstraction of a cell can vary according to the
application being developed. A CoCell could encompass
other CoCells, benefiting from composition.

Each cell has at least one CoDirectory, which helps
in finding the available services. To avoid bottleneck
issues, it is possible to have more than one CoDirectory
in each cell. Furthermore, it is possible to have CoCells
without a CoDirectory physically present in it. In this par-
ticular situation, it is available in the next outer cell in the
hierarchy that services this cell, i.e. it has a CoDirectory
node. Additionally to CoDirectory, the CoDSA specifies
other types of nodes in the infrastructure: CoProvider and
CoConsumer. The former represents a node in Continuum
that offers services, called CoServices, while the latter is
the name given to each node that uses a CoService in the
infrastructure. Figure 3 illustrates the CoDSA, with the en-
tities described above, and also presents two possibilities
in the architecture: CoService migration and replication.

Migration allows a CoService to change its location
from a CoProvider to another. This occurs in the scope of
a CoCell, and it is used to improve the system performan-
ce, reducing communication costs and delays. Currently,
web services architecture does not support this feature.
A related concern is how to decide when a CoService
should migrate and to which location. This decision must
consider hysteresis and the costs involved. In our current
proposal, these aspects are not tackled, but intended as
the subject of future work.

Another option in CoDSA is replication. CoServi-
ces can be replicated among CoProviders in the scope
of a CoCell. This can improve system reliability of
CoServices. Whenever a node changes its location or
disappears, which is common in mobile environments,
the CoService it provides becomes unavailable. If there
is a replica, it can be discovered from the CoDirectory.
Besides this discovery and registration feature, we also
need a mechanism for the replication and synchronization

Volume 20 • nº 2 • July/December 2009

CO NTINUUM SOFTWARE INFRASTRUCTURE FOR UBIQUITOUS COMPUTING: A SERVICE-BASED APPROACH112

of web services. The two main problems with replication
are the synchronization of CoService copies and the de-
cision whether a replica of a CoService should be made.
Moreover, communication costs of the dynamic copy
must be considered. Similarly to what happens during
migration, it is the Distributed Execution subsystem that
is in charge of the main operation, as well as of dealing
with the other problems pointed out here.

CoDSA allows the dynamic selection of CoServices,
according to the functionalities needed for each node of
the system. We can obtain an adaptive behavior in Conti-
nuum by replacing or reconfiguring the CoServices that a
CoConsumer employs. During software design, the Execu-
tion Profiler provides support for the selection of services
needed by each node in the system. During execution, it
is the Adaptation Management that takes this decision.

The interaction among nodes in the CoDSA, as
illustrated in Figure 3, uses SOAP messages. SOAP1,
an acronym for Simple Object Access Protocol, is a
lightweight communication protocol based on XML
that allows the accessing of web services. The protocol
is platform and language independent. As the name im-
plies, it is very simple and also extensible. SOAP enables

asynchronous client-sever communications and can
make use of a wide range of protocols, including HTTP.

The next section presents the services modeled to
support the CoDSA and the additional abstractions needed
to represent and manage applications as services.

5 Architecture model and application
 support

The proposed model is divided in two main
concepts, one related to the services necessary to the
support of CoDSA and another related with an abstrac-
tion provided to the representation of applications in
Continuum. Regarding the first concept, two services
of the Distributed Execution subsystem are directly
related to CoDSA.

Executor is a service that should be present in all
Continuum nodes, called CoNodes. The aim of Executor
is to offer a minimum support for the existence and exe-
cution of applications in Continuum infrastructure. For
instance, common activities carried out by this service
include deployment, initialization, and finalization of

Figure 3. Continuum distributed service architecture.

1Specification available at http://www.w3.org/TR/soap12-part1/.

Scientia – Interdisciplinary Studies in Computer Science

CRISTIANO COSTA, FELIPE KELLERMANN, RODOLFO ANTUNES, JORGE BARBOSA, ADENAUER YAMIN, CLÁUDIO GEYER 113

applications. The Executor acts as a thin layer between the
foundation layer and the middleware, and consequently,
other pluggable services.

The other pluggable service related to CoDSA
is Service Manager. This service should be present
in each CoDirectory and acts as a directory service.
Additionally, this service includes the desired coordi-
nation characteristics in Continuum, i.e. migration and
replication of services.

An abstraction for representing mobile and dis-
tributed services instantiation is necessary to support
deployment, migration, and replication. We need this
abstraction because the current web services standard,
which is modeled using WSDL (Web Service Descrip-
tion Language), does not cover all the requirements of a
pluggable service in Continuum. To draw a parallel, we
consider the affirmation in Papazoglou (2008), which
states that an XML scheme alone could not define a web
service, requiring an additional standard, i.e. WSDL. The
abstraction for representing applications in Continuum
is called CoApp.

Conceptually, a CoApp is an application or a com-
ponent in the form of a web service that is ready to be
used in the Continuum infrastructure. It comprises the
unit that can be installed, removed, updated or registered
as a CoService, in which case it could also be replicated,
migrated or synchronized. The outer interface of a CoApp
is always a web service.

Technically, a CoApp consists of a data format that
represents a group of related files compressed and archi-
ved, in which there is a sufficient amount of information
to infer the type of application, different versions, and
requirements, such as the execution runtime needed, the
location of resources, and the external service interface.
It is our aim that the CoApp format be as simple and as
small as possible.

In Figure 4 we present the simplified conceptual
vision of a CoApp. The figure presents the CoApp contai-
ner, divided in three sections (CAC, CAR, and CAI). The
lines at the lower part of the representation correspond to
the services that the CoApp exports.

Three types of information are stored in the specific
sections: metadata, resources, and implementation. The
CoApp Configuration (CAC) section stores the metadata,
such as versions, localizations, types of codifications, and
references. This is a mandatory section in every CoApp,
represented by an XML file and an XSD specification. Re-
sources are referred in the CoApp Resources (CAR) section,
which may include databases, images, internalization code
etc. CAR is an optional section. The final section is named
CoApp Implementation (CAI), which contains one or more
implementation of the application. At the user’s convenience,
each implementation may have a different runtime.

Figure 4. CoApp conceptual vision.

The transformation process of a preexisting applica-
tion in a CoApp is straightforward and involves two steps.
The first step is to describe the application, possibly with
a WSDL interface, in a standard CoApp XML definition,
containing the three sections described before. An XSD
is also provided to validate the XML document created.
This process is very simple, but we intend to automate it
in the future. The second step is to create a single archive
that has the binary codes, XML definitions, and resources,
among others files. We have used the standard ZIP format
in this process with base64 codification.

A sample CoApp description is presented in Figure
5, an application named Calendar. In the CAC section,
we define the elements Name, Version, Author, and
Description. Additional elements are supported, such as
License or Copyright. The element Service defines the
service interface, using WSDL. The last element present
in the CAC section of the sample CoApp is Requirements.
Requirements of the “Runtime” type apply during execu-
tion. “Component”, a generic type of requirement used for
stating CoApp dependencies, is not shown in the example.
In the CAR section, all the resources employed by the
CoApp are listed. According to the runtime requirements
fulfilled in the CAC section, the associated runtime in
the CAI section is chosen. In the example, there are two
possibilities in terms of runtime: Python and Lua.

Figure 5. A sample CoApp description.

Volume 20 • nº 2 • July/December 2009

CO NTINUUM SOFTWARE INFRASTRUCTURE FOR UBIQUITOUS COMPUTING: A SERVICE-BASED APPROACH114

5.1 Applications in the infrastructure

The execution of applications in Continuum is
accomplished by the use of the Executor service. Every
CoNode should run this service. The aim of Executor is
to support the management of applications in the infras-
tructure (the WSDL interface is presented in Figure 6).

Figure 6. Pluggable service Executor.

For the execution of applications in Continuum, the
first step is to use deployApplication from any node in the
infrastructure. Then, the application is deployed and regis-
tered as belonging to Continuum. Eventually, this CoApp
may be registered as a pluggable service using Service Ma-
nager. After this operation, we consider that a CoApp is a
CoService. Before the registration, a CoApp is considered as
a standalone application, which can use the services offered
by the Executor (with the exception of the serviceReference
private operation). To start the execution of a CoApp, we use
startApplication. The complementary exitApplication may
finalize either one or all instances of a CoApp.

To obtain information about a CoApp, such as
application state, we use statusApplication. One way of
changing the state of an application is using suspendA-
pplication and resumeApplication, which, as the name
implies, respectively, stop and continue its execution. A
CoApp can be serialized using getApplication. Service
Manager typically uses this operation to move or copy
services. Another operation (listApplications) obtains
the list of all applications in a certain node. Finally, ser-
viceReference is a private method used during Service
Manager coordination. This function does not have a
straight purpose in the node itself.

5.2 Applications as services

To instantiate a CoApp as a Continuum pluggable
service, we need to register it in the Service Manager.
This service is present only in special nodes named Co-
Directory, as already pointed out. Therefore, the first step
is to find these nodes. We have employed Multicast-DNS
(mDNS) as the discovery protocol (Giordano, 2005).

After discovering a Service Manager, we can use
its functions (the WSDL interface is shown in Figure

7). There are only two methods that deal with CoApps:
registerService and updateService. The former transforms
a CoApp into a CoService, making it possible to remotely
call its methods (along with copying and moving capabili-
ties), while the latter only updates a previously registered
CoApp, generating a new CoService version.

Figure 7. Pluggable service Service Manager.

To remove a CoService from Service Manager, we
can employ unregisterService. Moreover, the lookupService
method is used to search for a service, either using the service
name (white pages) or descriptive semantics (yellow pages).
The other two methods, copyService and moveService, are
used to respectively copy and move services from one node
to another. They are detailed in the next subsection.

5.3 Service Replication and Migration

Two fundamental characteristics of our proposal
are the support of copying and migrating services. The
Service Manager and the Executor coordinately handle
these characteristics. In this subsection, we briefly detail
the functional semantics of each operation.

Replication consists in copying one CoService from
one CoNode to another in the Continuum infrastructure.
The operations offered by this service continue to be ac-
cessible in the origin, even during the copying process, in
addition to the new availability at the destination. In the
developed model, this operation involves some steps. First
of all, a CoConsumer asks for replication calling copySer-
vice. This CoConsumer can be any node, probably (but
not necessarily) the node that contains the service being
replicated. After that, Service Manager verifies if it has
the CoApp content; if not, the service calls the Executor’s
getApplication method in the origin node, thus obtaining
the desired content. The next step is to issue deployA-
pplication in the Executor of the destination CoNode,
sending the CoApp content to it. Subsequently, when the
destination node accepts the CoApp, the Service Manager
must be updated. This is accomplished by calling regis-
terService in the CoDirectory that is associated with the
destination CoCell. When a node searches for a specific
service, it receives a CoNodeLocation, which contains the
reference of both CoProviders (origin and destination).

Migration is very similar to replication, with a few
additional steps. The difference in this operation is that
we move the service from origin to destination. During

Scientia – Interdisciplinary Studies in Computer Science

CRISTIANO COSTA, FELIPE KELLERMANN, RODOLFO ANTUNES, JORGE BARBOSA, ADENAUER YAMIN, CLÁUDIO GEYER 115

the moving process, all requests are still fulfilled from
the origin CoNode. After the conclusion of this opera-
tion, the service is no longer available from the origin
and requests must be redirected to the destination node.
If a node tries to access this service in its former location,
it receives a message that indicates that the service is not
present. As a consequence, it must call lookupService
from the Service Manager to obtain the new address.
To minimize the occurrence of this situation, whenever
a service is migrated, the Service Manager notifies the
new location to the CoConsumers that are currently using
the moved service, sending its new CoServiceReference.
To perform this notification, the Service Manager has to
call the Executor’s serviceReference method. Another
additional step is the unregistering of the CoService
in the CoDirectory associated with the origin CoCell,
which is done by the unregisterService operation of the
Service Manager.

Activities in web services tend to be coordinated,
using standards such as BPEL (Business Process Exe-
cution Language), sometimes referred as web services
orchestration in the literature (Papazoglou, 2008). This
coordination reinforces the fact that services and compo-
nents should be reutilized. As a consequence, the most
complex operations proposed (replication and migration)
are defined as low-level, in a coordinated approach. We
believe that in this way, new features could be added
to the model without any adaptation in the provided
infrastructure.

6 Implementation and analysis of results

In this section, we present the developed prototype
and assess the distributed service architecture proposed
for the Continuum project. The method used for valida-
tion is based on experimental evaluation, i.e., we propose
case studies to assess the basic ideas of the model. The
idea behind this approach is to choose a single instance,
also called an event or a case, in which an in-depth and
over-time examination is prepared (Flyvbjerg, 2006). The
cases should be selective, focusing on the main issues that
are important to the subject being analyzed; besides, the
choice of the case to be studied must increase the extent
of what can be learned, in the time interval available for
the completion of the work.

We decided to employ this methodology in order
to abridge the time in obtaining results for our research.
Furthermore, besides being considered a scientific method,
case studies are deemed as acceptable, in terms of percep-
tion of the facts involving the object of study. They also
fulfill the three main ideas of the qualitative method: des-
cribing, understanding, and explaining (Flyvbjerg, 2006).

In the case study, we discuss the proposition of
CoDSA. To accomplish this goal, we have modeled and
implemented some services proposed in the distributed
execution subsystem, more specifically the Executor
and the Service Manager. The services were first defi-
ned using WSDL. In doing so, heterogeneity has been
assured and the language employed for the implemen-
tation was not significant for interoperability purposes.
We chose Python as the language for implementing our
services. Our choice was based on various characteristics
of the language, such as: platform independence, open
source license, and ease of programming. Perhaps the
main motive to employ Python was the fact that it is
considered one of the best languages for quick devel-
opment and initial prototyping, since the code is usually
shorter and faster to write, due to its high expressiveness
and set of libraries.

The use of web services in Python is provided
by various libraries, which support SOAP, WSDL, and
other related protocols. Among those, we have chosen
SOAPpy. Another library employed in our implementa-
tion was ElementTree. This toolkit helps the management
of XML files in Python, providing a container object to
store hierarchical data structures in memory.

As the communication protocol, we used the stan-
dard TCP/IP stack with HTTP in the transport layer. For
discovery purposes, we employed the Multicast-DNS
protocol. By using this protocol, it is possible to apply
the standard Domain Name Service (DNS) management
in small networks without the need of a DNS server. Co-
Nodes utilized this protocol for finding their associated
CoDirectory.

Using the developed prototype, we generated some
cases. In this article, we present four of those cases: appli-
cation deployment, register of a CoApp as a CoService,
replication of a CoService, and migration of a CoService.
All cases were executed in a real environment using com-
mercial off-the-shelf (COTS) PCs and HP Ipaq PDAs.

In Figure 8 we present the deployment process of a
CoApp in the infrastructure, containing one desktop and
two mobile devices, highlighting four possible steps. The
deployApplication method is employed, which generates
the message deployApplicationRequest (step 1). This
message contains a whole CoApp. As a return (step 2),
the node produces a CoApp descriptor.

An alternative way of deployment is presented as
the next steps of Figure 8. A CoNode calls the getAppli-
cation operation of the Executor service (step 3), using
a getApplicationRequest message and passing a CoApp
descriptor. The response is a getApplicationResponse
message (step 4), which contains the application in its
CoApp format. This received application is then installed
in the local CoNode.

Volume 20 • nº 2 • July/December 2009

CO NTINUUM SOFTWARE INFRASTRUCTURE FOR UBIQUITOUS COMPUTING: A SERVICE-BASED APPROACH116

Figure 8. Deploying applications in Continuum.

The second case, illustrating the transformation of a
CoApp into a CoService, is presented in Figure 9. It consi-
ders the same infrastructure employed in the former event.
Whenever a CoApp is registered as a service, its interface
is disclosed, so that other CoNodes can make use of its
operations as a pluggable service. The first call is to the regis-
terService operation of the Service Manager, which uses the
registerApplicationRequest message (step 1), containing a
CoApp. As a return (step 2), we obtain a CoServiceReference
composite message. Not only does this message contain the
functional and semantic description of a service, but also its
physical location (represented by CoNodeLocation).

In Figure 9 we also present the process of finding
a service, accomplished by calling the lookupService
method of the Service Manager. A lookupServiceRequest
message is generated (step 3), containing CoServiceRe-
ference. As a result, a lookupServiceResponse message is
produced (step 4), which also contains the same CoSer-
viceReference. The difference between both messages
is that in the first one only the location of the service is
relevant whereas in the second a list of references could
be possibly obtained.

Figure 9. Applications becoming Services in Continuum.

Figure 10 presents the event of replicating a ser-
vice. Differently from the previous cases, this diagram
does not present the WSDL messages, but rather only

some symbolic names. This is a simplification of the
real process, which also involves additional steps. The
process starts when a node calls copyService (step 1),
passing a CoServiceReference (myService in the figure)
and the CoNodeLocation to which the node will be copied
(destination in the figure).

In the case study developed, the CoDirectory did
not have a copy of the CoApp that implements the desired
service (myService). Therefore, the CoApp must obtain
the application from its origin using the getApplication
method (steps 2 and 3). If the CoApp is available in the
CoDirectory, these steps could be omitted. After that, the
service must be deployed in the destination CoNode (step
4). The destination nodes accept the installation of the
CoApp as a trust relationship has been previously created
between this CoNode and the CoDirectory (the aspects
of security and trust are out of the scope of the present
article). The Node returns a deployApplicationResponse
message (step 5), which contains the descriptor of the
CoApp. An additional step, omitted in the diagram, is the
registering of the new location in the CoDirectory itself.
The final step (6) is the message returned to the CoApp
that started the operation, containing the reference of the
newly instantiated service.

Figure 10. Service replication in Continuum.

Finally, in Figure 11 we show the last case, which
illustrates the service migration. This case has also
been simplified and has similar steps (from 1 to 6).
The only difference is the called method, which is mo-
veService instead of copyService. The additional steps
are related to the movement of the service from origin
to destination (step 7) and the update of a CoNode that
is using the service being migrated (step 8). This last
step consists of updating the references, in nodes that
are using the service, with those of the new location, so
that the subsequent accesses employ the new address
(illustrated in step 9).

From the case studies developed and shown in
this article, we have learned some lessons. The main
advantage of the proposed model is that it does not
create a completely new technology, but rather, while
developing the distributed service architecture for

Scientia – Interdisciplinary Studies in Computer Science

CRISTIANO COSTA, FELIPE KELLERMANN, RODOLFO ANTUNES, JORGE BARBOSA, ADENAUER YAMIN, CLÁUDIO GEYER 117

Continuum, we are extending the current web services
standards adding a new data abstraction and introducing
a set of service orchestrations. By doing so, not only are
we inheriting technological aspects of the SOC, but we
are also inheriting an existing knowledge, terminolo-
gy, and understanding on the field. Another important
point is that we are reusing existing applications with
as little change as possible, making them available in
the Continuum infrastructure.

Figure 11. Service migration in Continuum.

In the cases developed we also detected some
limitations. First, all applications should have a CoApp
description. Currently this is a manual process, which
introduces some overhead in porting legacy code. Second,
the execution of existent applications is only offered for
software that uses runtimes, such as those developed for
virtual machines. Programs compiled to a specific pla-
tform, are currently not supported. We tested our prototype
with applications implemented in Python and in Java. We
do not see this as a very strong limitation, since the use
of virtual machines has been defended as a solution to
improve heterogeneity in ubicomp (Costa et al., 2008).

Another limitation concerning our current im-
plementation is that we had limited the discovery and
availability of services only to one CoDirectory. This
occurs since we have not developed a mechanism
for CoDirectory orchestration yet. Furthermore, the
programmer is entirely responsible for all decisions
regarding when and where to migrate (or to copy) a
service. In the future, we can add a specific algorithm
to help in this decision.

Although we observed some limitations, we belie-
ve that the use of SOA in ubicomp is a promising op-
portunity. It clearly fosters heterogeneity and integration
among software implemented in different languages.
Also, concerning our model, we believe that it helps the
deployment and availability of code due to its pluggable

feature. Another strength is related to the possibility
of specifying alternative codes in the CoApp, possibly
using distinctive runtimes. This feature adds a certain
degree of adaptability, since code can be select according
to the runtime available in the destination node.

7 Conclusion and future works

In this work, we have presented Continuum, a
software infrastructure employing middleware and
framework in ubicomp. In the detailing of Continuum,
we described a distributed architecture for service support
based on web services and SOA. Our proposal allows the
deployment, copy, and migration of services.

We conducted some experimental evaluations to
assess Continuum distributed service architecture. We
proposed some experiments, based on the case study
methodology. By doing so, we demonstrate that its im-
plementation is possible, and also the main strengths and
limitations that it could present.

As future work we plan the addition of excep-
tion mechanisms and fault handling to the model
proposed. Furthermore, we intend to do a thoroughly
investigation on communication overhead and also
on strategies that help deciding when migrating or
replicating a CoService. As previously stated, one of
the future improvements is on supporting or automa-
ting the task of describing an existing application as a
CoApp. Also, currently the proposed model is focused
only on supporting services described by the WSDL
standard, therefore making the existence of a WSDL
description an implicit dependency for exposing an
existing application as a Continuum pluggable service.
The proposed model is also focused on the standard
web services, using SOAP, though we are aware of
increasing efforts toward creating less resource con-
suming approaches, such as the RESTful Web services
(Pautasso et al., 2008).

We believe that the use of web services is an
appropriate solution for ubicomp, as it improves the
standardization of formats and protocols for describing
services and their communication mechanisms. More-
over, we trust that the development of an architecture in-
dependent of runtime, platform or language incorporate
advantages already obtained by SOA and web services
standards. Among those advantages, we highlight the
interoperability among heterogeneous environments,
the decoupling of the architecture from the hardware
and low-level software infrastructure, and the indepen-
dence from any type of proprietary technology, device
or manufacturer.

Volume 20 • nº 2 • July/December 2009

CO NTINUUM SOFTWARE INFRASTRUCTURE FOR UBIQUITOUS COMPUTING: A SERVICE-BASED APPROACH118

References

ANE ROUSIS, N.; MOHINDRA, A. 2006. The software-as-a-service
model for mobile and ubiquitous computing environments. In:
INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUI-
TOUS SYSTEMS: NETWORKING & SERVICES, III, San Jose,
2006. Proceedings... New York, IEEE, p. 1-6.

AUG USTIN, I.; YAMIN, A.; BARBOSA, J.; SILVA, L.; REAL, R.;
FRAINER, G.; CAVALHEIRO, G.; GEYER, G. 2004. ISAM
- Joining context-awareness and mobility to building pervasive
applications In: M. ILYAS; I. MAHGOUB (eds.), Mobile Computing
Handbook. Portland, CRC, p. 73-94.

BERNSTEIN, P. 1996. Middleware: A model for distributed system
services. Comm. of the ACM, 39(2):86-98.

COSTA, C.; YAMIN, A.; GEYER, C. 2008. Towards a general software
infrastructure for ubiquitous computing. IEEE Pervasive Comput,
7(1):64-73.

FLY VBJERG, B. 2006. Five misunderstandings about case-study.
Qualitative Inquiry, 12(2):219-245.

FRAINER, G.; SILVA, L.C.; GEYER, C.; AUGUSTIN, I.; YAMIN,
A. 2007. Flexible application and context aware adaptation in a
pervasive file system. In: INTERNATIONAL CONFERENCE
ON SELF-ORGANIZATION AND AUTONOMOUS SYSTEMS
IN COMPUTING AND COMMUNICATIONS. III, Leipzig, 2007.
Proceedings... New York, IEEE, p. 118-121.

GIO RDANO, M. 2006. DNS-based discovery system in service oriented
programming. In: EUROPEAN GRID CONFERENCE, Amsterdan,
2005. Proceedings... Amsterdan, Springer, p. 840-850.

HAO , W.; GAO, T.; YEN, I.; CHEN, Y.; PAUL, R. 2006. An infras-
tructure for web services migration for real-time applications. In:
INTERNATIONAL WORKSHOP ON SERVICE-ORIENTED
SYSTEM ENGINEERING, II, Shanghai, 2006. Proceedings…
New York, IEEE, p. 41-48.

HOWERTON, J. 2007. Service-oriented architecture and web 2.0. IT
Professional, 9(3):62-64.

JUS ZCZYK, L.; LAZOWSKI, J.; DUSTDA, S. 2006. Web service
discovery, replication, and synchronization in ad-hoc networks.

In: INTERNATIONAL CONFERENCE ON AVAILABILITY,
RELIABILITY AND SECURITY, I, Vienna, 2006. Proceedings...
New York, IEEE, p. 847-854.

MOD AHL, M.; AGARWALLA, B.; SAPONAS, T.; ABOWD, G.; RA-
MACHANDRAN, U. 2006. UbiqStack: A taxonomy for a ubiquitous
computing software stack. Pers. and Ubiquit. Comput., 10(1):21-27.

MOK HTAR, S.; GEORGANTAS, N.; ISSARNY, V. 2007. COCOA:
Conversation-based service composition in pervasive computing
environments with QoS support. J. Syst. Softw., 80(12):1941-1955.

MOS ER, L.; MELLIAR-SMITH, P.; ZHAO, W. 2006. Making web
services dependable. In: INTERNATIONAL CONFERENCE ON
AVAILABILITY, RELIABILITY AND SECURITY, I, Vienna,
2006. Proceedings... New York, IEEE, p. 440-448.

PAP AZOGLOU, M. 2008. Web Services: principles and technology.
Harlow, Pearson, 752 p.

PAP AZOGLOU, M.; GEORGAKOPOULOS, D. 2003. Introduction:
Service-oriented computing. Comm. of the ACM, 46(10):24-28.

PAU TASSO, C.; ZIMMERMANN, O.; LEYMANN, F. 2008. Restful
web services vs. ‘big’ web services: Making the right architectu-
ral decision. In: INTERNATIONAL CONFERENCE ON THE
WORLD WIDE WEB, XVII, Beijing, 2008. Proceedings... New
York, ACM, p. 805-814.

SILVA, L.C.; COSTA, C.A.; GEYER, C.; AUGUSTIN, I.; YAMIN,
A. 2008. On the control of adaptation in ubiquitous computing.
In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPU-
TING, XXIII, Fortaleza, 2008. Proceedings... New York, ACM,
p. 2228-2229.

TER GUJEFF, R.; HAAJANEN, J.; LEPPANEN, J.; TOIVONEN, S.
2007. Mobile SOA: Service orientation on lightweight mobile
devices. In: INTERNATIONAL CONFERENCE ON WEB SER-
VICES, V, Salt Lake City, 2007. Proceedings... New York, IEEE,
p. 1224-1225.

WEI SER , M. 1991. The computer for the twenty-first century. Scientific
American, 265(3):94-101.

Submitted on November 5, 2009.
Accepted on December 3, 2009.

