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Abstract

In this paper, we stressed that avoiding significance tests under an alternative model selection

framework does not mean that spatial autocorrelation no longer matters, since Akaike

information criterion (AIC) is sensitive to the presence of spatial autocorrelation.  We exemplify

our discussion by analysing species richness patterns of American amphibians, in the context

of metabolic theory, to understand how the presence of spatial autocorrelation in data affects

data analysis under alternative frameworks of hypothesis testing and model selection.  In

general, temperature was found to be an important predictor of species richness in both

frameworks, although particular predictions of metabolic theory were not fully satisfied when

taking spatial autocorrelation into account.
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Resumo

Neste artigo, enfatiza-se que evitar os testes de significância baseados na seleção de

modelos alternativos não significa que a autocorrelação espacial não ocorra, pois o critério

de informação de Akaike (AIC) é sensível à presença de autocorrelação espacial. A discus-

são é exemplificada pela análise de padrões de riqueza de espécies de anfíbios america-

nos, no contexto da teoria metabólica, de forma a entender como a presença da

1 Programa de Pós-Graduação em Biolo-

gia Animal, Universidade de Brasília, Cam-

pus Universitário Darcy Ribeiro, 70910-900

Brasília DF, Brazil.
2 Departamento de Biologia Geral, ICB,

UFG, Campus Samambaia, Caixa Postal

131, 74001-970 Goiânia GO, Brazil.
3 Department of Ecology and Evolutionary

Biology, University of Connecticut, 75 N.

Eagleville Road, Unit 3043, Storrs, CT

06269-3043, U.S.A.

Neotropical Biology and Conservation

2(3):119-126, september-december 2007

© by Unisinos

119a126_ART01_Cassemiro etal_NEO2[3]_OK.pmd 26/11/2007, 22:23119



Fernanda A .S. Cassemiro, José Alexandre Felizola Diniz-Filho, Thiago Fernando L.V. B. Rangel, Luís Maurício Bini

120 Volume 2 number 3 september - december 2007

Introduction

In recent years there has been increa-
sing interest in the application of spa-
tial analysis techniques to problems in
ecology and biogeography (see Fortin
and Dale, 2005 for a recent review).
This has been motivated by several
advances, including a resurgence of
interest in broad-scale diversity gradi-
ents and other macroecological pat-
terns, the ability to deal with large da-
tabases on biodiversity, climate and
geography, and the application of more
sophisticated statistical techniques that
take into account the spatial dimensi-
on of data (Keitt et al., 2002). This fi-
nal point arises from the recognition
that spatially distributed ecological
phenomena usually generate spatial
autocorrelation in biological data, an
issue that can be viewed either as a
‘problem’ that must be solved or as an
opportunity to understand the spatial
context of these phenomena (Legendre,
1993; Legendre and Legendre, 1998).
It is now widely recognized that spati-
al autocorrelation affects significance
tests in geographical ecology analyses,
since error variances are underestima-
ted (Legendre, 1993; Legendre and
Legendre, 1998; Diniz-Filho et al.,
2003; Dormann, 2007). For example,
when spatial structure appears in re-
gression residuals, this is an indicative
of a potential misspecification in the
regression models, which usually as-
sume normally distributed and inde-
pendent errors with constant variance
(see Lennon, 2000 and Diniz-Filho et
al., 2003 for a discussion on the ori-
gins of autocorrelation structures in ri-
chness data). Formally, the covariance
matrix among residuals is equal to σ2I,

cedures based on information theory
(mainly Akaike Information Criterion,
AIC), thereby completely avoiding the
classical hypothesis-testing approach
(see Burham and Anderson, 2002,
2004; Ellison, 2004; Johnson and
Omland, 2004; Richards, 2005; Ste-
phens et al., 2007).
For ecologists working with broad-sca-
le geographic distribution data and de-
rived measures, such as species rich-
ness, it is tempting to link these two
discussions (i.e., problems in estima-
ting true Type I errors in the presence
of spatial autocorrelation and concep-
tual problems with hypothesis testing)
and justify a paradigm shift from hypo-
thesis testing to model selection under
information theory at least in part as a
way to deal with inferential problems
caused by spatial autocorrelation (e.g.,
Stohlgren et al., 2005; Segurado et al.,
2006). However, we would like to
stress here that avoiding significance
tests under an alternative model selec-
tion framework in fact does not neces-
sarily mean that spatial autocorrelati-
on no longer matters, although this has
not yet been explicitly tested in geo-
graphical ecology (but see Hoeting et
al., 2006). In this paper, we discuss how
geographical data analysis can be un-
derstood with respect to the alternati-
ve frameworks of hypothesis testing
and model selection, especially consi-
dering the presence of spatial autocor-
relation in data. To illustrate our point,
we analysed spatial patterns of species
richness of American amphibians, sho-
wing how data fits the predictions from
metabolic theory of ecology (see Al-
len et al., 2002; Brown et al., 2004;
Hawkins et al., 2007a,b) under the two
alternative data analysis frameworks.

autocorrelação afeta a análise dos dados com base em uma abordagem alternativa de

teste de hipótese e seleção de modelos. Em geral, a temperatura foi uma importante

preditora da riqueza de espécies em ambas as abordagens, embora predições específicas

da teoria metabólica não foram completamente alcançadas quando consideramos a

autocorrelação espacial.

Palavras-chave: teste de hipóteses; autocorrelação espacial; seleção de modelos; crité-

rio de infomação de Akaike; macroecologia; gradiente de riqueza; teoria metabólica

where I is an identity matrix (Cressie,
1993; Haining, 1990, 2002; Griffith,
2003). This is why spatial statistics, and
specifically spatial regression models,
are used to ‘correct for’ or to ‘take into
account’ the presence of spatial struc-
ture in data or model residuals. As po-
inted out by Cressie (1993), “…if it
appears that [spatial covariance among
residuals] > 0, there may be a missing
variable (varying spatially) that is cau-
sing it. By (unknowingly) modelling its
presence through spatial dependence
parameters, the spatial model is more
resistant to misspecification errors”.
Despite the ever increasing range of
spatial statistics that can be applied to
macroecological and biogeographical
data (Lennon, 2000; Lichstein et al.,
2002; Liebhold and Gurevitch, 2002;
Legendre et al., 2002; Diniz-Filho et
al., 2003; Hawkins and Porter, 2003;
Borcard et al., 2004; Diniz-Filho and
Bini, 2005; Bahn and MacGill, 2007;
Kuhn, 2007; Dormann, 2007; for re-
cent examples), many ecologists still
have problems dealing with the phe-
nomenon of spatial autocorrelation.
Simultaneously, there has been a re-
action growing for quite some time
against the standard statistical testing
approach when applied to non-expe-
rimental, usually broad-scale spatial
data in ecology and evolution, espe-
cially with respect to model selection
procedures (e.g., Quinn and Dunham,
1983; Hilborne and Mangel, 1997;
Hobbs and Hilborne, 2006; Stephens
et al., 2007; see also Cohen, 1994).
As a consequence of this latter move-
ment, an increasing number of ecolo-
gists now advocate alternative appro-
aches to data analysis, including Baye-
sian methods and model selection pro-
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Material and methods

Data

To illustrate the use of hypothesis tes-
ting and model selection frameworks
we analysed data of 3,019 amphibians
species of New World, obtained from
Global Amphibian Assessment (see
Stuart et al., 2004), available at http://
www.natureserve.org, using grid with
4,187 cells of 1° of latitude and longi-
tude. We selected seven predictors for
further analysis: annual actual evapo-
transpiration (AET), elevation (ELEV),
mean annual temperature (TEMP), an-
nual potential evapotranspirantion
(PET), mean annual precipitation
(PREC), averaged relative humidity
(HUM), net primary productivity
(NPP) (New et al., 1999).

Hypothesis testing

We first analysed the effect of tempe-
rature on species richness, following
recent work on the metabolic theory of
ecology (MTE, see Allen et al., 2002;
Brown et al., 2004). The idea of ap-
plying MTE to evaluate richness gra-
dients is that regressing the logarithm
of species richness of ectotherms or-
ganisms against temperature will give
a specific slope (see below), which was
derived based on the first principles of
termodynamics and on biochemical
kinetics at cellular level. Thus, testing
this particular prediction of metabolic
theory represents the classical applica-
tion of hypothesis testing in geographi-
cal ecology. Temperature is given as 1/
kT, were temperature T is expressed in
Kelvin and k is Boltzmann’s constant
(in eV, equal to 8.62 x 10-5) and the pre-
dicted slope should be between -0.6 and
-0.7 (Brown et al., 2004; see also Evans
and Gaston, 2005 for definitions). The
observed slope b can be statistically
compared with a parametric value of b
using, for example, the classical t-dis-
tribution, in which t = (b - β)/s

b
, were

s
b
 is the standard error of slope.

However, it is important to realize that

this simple test of the theory suffers
from a potential problem, because the-
re is usually a strong autocorrelation
in model residuals. This can be tested
using Moran’s I coefficients (see Di-
niz-Filho et al., 2003; Rangel et al.,
2006). Thus, hypothesis testing from
OLS model may be biased and it is
necessary to adopt an explicit spatial
regression approach to better test a
hypothesis about a regression slope.
The statistical theory underlying spa-
tial data is now well developed (Hai-
ning 1990, 2002; Cressie, 1993), al-
though new issues and methods conti-
nue to arise (see Anselin, 2002; Fothe-
ringham et al., 2002; Griffith, 2003;
Diniz-Filho and Bini, 2005; Kuhn et al.,
2006; Carl and Kuhn, 2007; Kuhn,
2007). A way to incorporate spatial
autocorrelation structure in data analy-
sis is better understood in a generali-
zed least squares (GLS) regression fra-
mework. The standardized regression
slopes (given in the vector β) are used
to evaluate the relative importance of
the predictors (matrix X) in explaining
a given response variable (the vector
Y), and are obtained by

β = (XTΣ-1 X)-1 X Σ-1Y
where Σ-1 is a matrix containing the
spatial structure in the residuals. The
residuals can be obtained from a stan-
dard, non-spatial multiple regression
(OLS), and spatial structures in these
residuals can be modelled using diffe-
rent forms of correlograms and vario-
grams (spherical, exponential, Gaussi-
an, etc.), and then these parameters can
be used to estimate Σ (see Cressie
1993). Simultaneous autoregressive
(SAR) and conditional autoregressive
(CAR) spatial regression models can
also be generated by using specific de-
finitions of Σ as a function of residual
autocorrelation (see Lichstein et al.,
2002; Tognelli and Kelt, 2004; for re-
cent applications in Ecology). For
example, in the SAR model, the cova-
riance matrix Σ is given by

Σ = σ2 [(I – ρW)T]-1 [I – ρW]-1

where r is the first-order autoregressi-
ve parameter and W is the row-stan-
dardized connectivity matrix among

spatial units (Cressie, 1993; Haining,
2002). Notice that when Σ = σ2I (i.e.,
the residuals are independent, with zero
covariance, and they have constant va-
riance σ2), the GLS estimation of the β
vector will reduce to the standard OLS
estimator of the regression coefficients.
We fitted a SAR model building the
matrix W based on the distance among
cells (W=1/d3, where d is distance be-
tween a pair of sample size).
All spatial analyses were performed in
SAM 2.0 (Rangel et al., 2006), freely
available at www.ecoevol.ufg.br/sam.

Model selection and
information theory

In the absence of a formal mathemati-
cal model to deal with colinearity
among temperature and other predic-
tors (i.e., that can generate a different
theoretical partial slope b to be formally
tested, as previously described – see
Hawkins et al., 2007b), the alternative
to understand patterns of species rich-
ness is to identify the best predictive
model and then link this model with
the available theories to explain geo-
graphic patterns in richness (e.g., Ha-
wkins et al., 2003). Within the context
of metabolic theory, we can at least
verify if temperature is one of the pre-
dictors retained in the best environmen-
tal model, providing support for a for-
mal modelling strategy to understand
how collinearity could be incorporated
into metabolic theory. It is also possi-
ble to verify that the partial coefficient
of temperature (i.e., taking into account
all other predictors) is still close to
MTE predictions. In this case, it might
appropriate to abandon the idea of a
formal hypothesis testing and shift to a
model selection framework under in-
formation theory (i.e., we are not inte-
rested in simply rejecting the null hypo-
thesis of b = 0 for all predictors; rather,
it is more interest to compare multiple
potential alternative models and to ve-
rify the parameter estimated.
The likelihood of data given multiple
possible models has been recently eva-
luated under information theory, a com-
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pletely different framework from clas-
sical hypothesis testing (Burham and
Anderson, 2002). Akaike information
criterion (AIC) is the most widely used
metrics for model selection under this
new framework and is computed as

AIC = -2 Ln [L(x | M
i
)] + 2K

where Ln[L(x|M
i
)] is the log-likelihood

of data x given the model M
i
, as pre-

viously defined, and K is the number
of parameters in the model. A small-
sample correction, which must always
be used when n/K > 40, is easily obtai-
ned by adding the term [2K(K+1)/(n-
K-1)] to the AIC formula. When com-
puting an ordinary least squares (OLS)
regression, an approximate AIC value
can be given by

AIC = n Ln(σ2) + 2K
where σ2 is the variance of the residu-
als of each regression model, and K is
the number of parameters, including the
intercept and the residual variance σ2.
The value of σ2 is used as a proxy for
the likelihood of the model given the
data, and is given by

σ2 = eTe/n
where e is the vector with regression
residuals (see Burham and Anderson,
2002, 2004 for details).
After calculating AIC values for va-
rious models, one can use the standard
model selection protocol (Burham and
Anderson, 2002; Johnson and Omland,
2004; Richards, 2005). The AIC of each
model is transformed to DAIC, which
is the difference between AIC of each
model and the minimum AIC found for
the set of models compared. A value of
DAIC higher than 7 indicates that a
model has a poor fit relative to the best
model, whereas a value less than 2 in-
dicates that a model is equivalent to the
minimum AIC model (Burham and
Anderson, 2002, 2004). The DAIC va-
lues can also be used to compute
Akaike’s weighting of each model (w

i
),

which provides evidence that the mo-
del is actually the best explanatory
model. These values of w

i
 are usually

standardized by their sum across all
models evaluated, so they are depen-
dent on the set of models used, and are
given then by

w
i
 = e(-1/2 ΔAIC) / Σ

i
[e(-1/2 ΔAICi)]

Finally, w
i
 values can also be used to

define the relative importance of each
predictor across the full set of models
evaluated by summing w

i
 values of all

models that include the predictor of
interest, taking into account the num-
ber of models in which each predictor
appears (Burham and Anderson, 2002).
Thus, since AIC is dependent on σ2,
even in the absence of a specific statis-
tical hypothesis to be tested it is still
important to know how autocorrelati-
on in data perturbs model selection pro-
cedures. Of course, model selection
based on statistical criterion (such as
in stepwise procedures) will be stron-
gly affected by autocorrelation, since
they are based on P-values that are bi-
ased in the presence of autocorrelati-
on, tending to result in the inclusion of
all variables in the model (since they
all tend to be statistically significant).
However, since spatial autocorrelation
biases residual variance estimates and
affects the likelihood of the OLS mo-
del given the data (due to probable
misspecifications), it will affect model
selection procedures too, as well as in
SAR analysis, which create another
residual variance. Thus, we compared
OLS and SAR results for 22 models to
understand how explicitly incorpora-
ting spatial structure into regression
model affects model selection proce-
dure based on AIC.

Results

For the New World amphibians data,
we found a slope of -0.686 (CI

95%
 = -

0.63, -0.742) according to an OLS re-
gression (Figure 1A). The confidence
interval does not include zero, so the
slope is significant at 5% level (i.e.,
differs from zero, the expectation un-
der the null hypothesis, H

0
: β = 0). The

temperature (1/kT) explains 83.5% of
the variation in the logarithm of speci-
es richness (Figures 1A, B), although
a heterocedastic distribution can be ob-
served, forming a constraint envelope
common in macroecological data (see
Brown, 1995; Gaston and Blackburn,

2000). Confidence interval includes the
expected value of -0.60 or -0.70, so this
dataset support metabolic theory.
However, for the first geographic dis-
tance class (0 – 463 km), a Moran’s I
coefficient equal to 0.427 (P < 0.001,
based on a randomization test) was
found, so that a spatially explicit regres-
sion model can be fitted to better esti-
mate slope and confidence interval. The
SAR model got worse model fit, with
an R2 = 0.087 due to pure effect of tem-
perature, although R2 of the fitted mo-
del (including both predictor and spa-
ce) was higher than OLS (R2 =0.928)
(see Rangel et al., 2006). The slope of
temperature was reduced to -0.354
(CI

95% 
= -0.331, -0.377), less consistent

with metabolic theory than the origi-
nal OLS model. The SAR model is in
principle more adequate than OLS, sin-
ce the residuals are much less spatially
autocorrelated (Moran’s I at the first
distance class I = 0.167, P = 0.206) (but
see Hawkins et al., 2007c). Other for-
ms of spatial regression (CAR) and
spatial filtering (Rangel et al., 2006; not
shown to conserve space) provided
equivalent results (although some of
them showed no significant correlati-
on between the two variables).
The comparison between OLS and SAR
results for the 23 models incorporating
multiple combinations of environmen-
tal predictors is shown in Table 1. The
correlation between ΔAIC values of
SAR and OLS models is high (r =
0.907), which suggests a very similar
sequence of ranking between alternati-
ve models generated by non-spatial and
spatial models. However, this correlati-
on is mainly due to the models with high
ΔAIC values (the poor models) found
in both SAR and OLS regressions.
In both SAR and OLS, the full models
(i.e., with all predictors, TEMP, NPP,
PET, AET, PREC, ELEV and HUM)
were retained as the best models (i.e.,
ΔAIC = 0) (Table 1). The other models
showed very high ΔAIC values, so they
are not parsimonious explanations for
richness patterns, suggesting that vari-
ations in temperature alone are not a
good explanation for richness patterns.
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theory. Thus, using spatial models qua-
litatively changed our conclusions, al-
though this is probably not so simple
(Hawkins et al., 2007c). Most of the
statistical literature suggests that spa-
tial regression is more robust than OLS
when there is strong, and since Allen
et al. (2002) did not consider these is-
sues, we can say that MTE is not quite
well supported when using a more ade-
quate model that takes residual auto-
correlation into account. However,
Hawkins et al. (2007c; see also Diniz-
Filho et al., 2003) recently warned that
adding spatial components may also
add scale issues to the modeling pro-
cess that may disturb parameter esti-
mation and, more importantly, interpre-
tation of the parameter.
Thus, tests of metabolic theory that do
not incorporate spatial structure may
not be robust. The difference in slopes
obtained from OLS and SAR models
also suggests that most of regression
of logarithm of richness against tem-

Notice also that regression coefficient
for temperature in the best model selec-
ted using AIC was equal to -0.496 to
SAR and -0.668 to OLS, whereas the
standardized regression coefficient was
equal to -0.66 in SAR and -0.889 in OLS
(Table 2). Temperature was the predic-
tor with highest standardized coeffici-
ent, followed by AET and RELEV, des-
pite best estimated coefficient by SAR
is a bit lower than expected by MTE.

Discussion

Spatial autocorrelation, model
selection and hypothesis testing

Under a classical hypothesis testing
framework, OLS analysis strongly su-
pports MTE, since the observed slope
is not statistically different from the
predicted one. However, after taking
spatial autocorrelation into account
using spatial regression (SAR), we
found even less support for metabolic

                              SAR OLS

ΔΔΔΔΔAIC w ΔΔΔΔΔAIC w I

AET,PET 3577.641 0.00 3567.873 0.00 0.57

AET,PREC 3  577.641 0.00 4319.985 0.00 0.657

PET,PREC 3618.091 0.00 3571.938 0.00 0.58

AET,PET,PREC 3618.091 0.00 3465.549 0.00 0.593

AET,NPP 3335.788 0.00 4305.343 0.00 0.666

NPP,PET 3776.86 0.00 3278.093 0.00 0.565

NPP,PREC 3752.266 0.00 5516.111 0.00 0.681

AET,PET,NPP 3312.15 0.00 3242.638 0.00 0.586

AET,PET,NPP,PREC 3148.682 0.00 3200.8 0.00 0.601

TEMP,AET 2190.009 0.00 856.033 0.00 0.452

TEMP,PET 2382.434 0.00 1985.884 0.00 0.451

TEMP,AET,PET 1193.59 0.00 135.422 0.00 0.403

TEMP,PREC 2070.23 0.00 880.629 0.00 0.443

TEMP,AET,PET,PREC 1130.787 0.00 82.592 0.00 0.405

TEMP,NPP 2179.02 0.00 752.755 0.00 0.418

TEMP,NPP,PET,AET 1060.516 0.00 74.412 0.00 0.416

TEMP,NPP,PET,AET,PREC 1003.775 0.00 40.941 0.00 0.417

TEMP,NPP,PET,AET,PREC,ELEV,HUM 0 1 0 1 0.431

TEMP,HUM 2496.984 0.00 1472.458 0.00 0.402

TEMP,HUM,AET,PET 1192.57 0.00 136.677 0.00 0.402

TEMP,ELEV 1521.546 0.00 1975.022 0.00 0.444

HUM,ELEV 4739.809 0.00 9133.797 0.00 0.801

ELEV,PREC 4010.902 0.00 5685.369 0.00 0.616

Table 1. Results of model selection based on AIC values calculated from Ordinary Least-Squares (OLS) and Simultaneous AutoRegres-

sive (SAR) models, including the ΔAIC values and the standardized Akaike’s weightings (w). The best model under each approach is in

bold. The I-value refers to the Moran’s I autocorrelation coefficient in OLS residuals in the first geographic distance class (0-463 km).

perature found using OLS might be due
to spatial covariance structure in both
variables (as well as non-stationarity
issues, see Cassemiro et al., 2007). This
leads to a more complicated issue of
how to evaluate simultaneously the
effect of temperature and other predic-
tors (including the effects of unknown
‘latent’ predictors that are ‘captured’ by
spatial structure), under metabolic the-
ory, leading to issues of comparison of
multiple models, incorporating diffe-
rent sets of predictors.
When we compare the ΔAIC values be-
tween SAR and OLS alternative models,
we verified that the lower values were
found in OLS regression, as found in
many other studies (see Kuhn, 2007).
These lower values of OLS when com-
pared to SAR are due to the fact that OLS
regression does not take spatial structure
into account. Indeed, all OLS models
contain significant spatial autocorrelati-
on in the first distance class (Table 1), so
they are not maximum likelihood models
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because residuals are not independent.
Thus, this apparently lower uncertainly
should not be viewed as an advantage of
OLS over spatial model.
In fact, it is equivalent to find a very
low Type I error for a given predictor
that, as we already discussed, may be
artificially caused by spatial autocorre-
lation. In this case, one should be ‘cer-
tain’ about the effect of a given predic-
tor but, when taking into account spati-
al autocorrelation, its influence may be
smaller than previously assumed (Lichs-
tein et al., 2002), as occurred with the
effect of temperature on species rich-
ness, as previously described.
Because of the high ΔAIC in the mo-
dels, the Akaike weights w

i
 are not dis-

persed among them, suggesting a con-
siderable certainty in deciding the best
model. Certainly the model with ΔAIC
equal zero is the best model in SAR and
OLS. This absence of variation in the
ΔAIC and Akaike weights values mi-
ght be due to great amount of our data.
According to Richards (2005), AIC
ranks models depends on the amount
type of data, and simpler models often
rank highly when data are scarce. On
the other hand, more complex models
usually improve the ranking as more
data is collected. The same author also
points out that, the more data collected,
the less likely a useful simple model will
be judged best according to AIC.

What is the support for metabolic
theory under alternative data

analysis frameworks?

Our analyses of American amphibians
under the two alternative data analysis

SAR OLS

Standardized b b Standard Error t P Standardized b b Standard Error t P

AET 0.204 0.009 <0.001 12.874 <0.001 0.36 0.015 <0.001 19.005 <0.001

PET -0.018 -0.004 <0.001 -6.162 <0.001 -0.364 -0.014 <0.001 -19.256 <0.001

PREC 0.073 0.05 0.007 7.466 <0.001 0.06 0.041 0.008 5.082 <0.001

HUM 0.093 0.009 0.001 7.821 <0.001 0.019 0.002 0.001 1.946 0.052

ELEV 0.165 <0.001 <0.001 18.088 <0.001 0.044 <0.001 <0.001 6.331 <0.001

NPP 0.041 0.199 0.028 7.073 <0.001 0.072 0.345 0.047 7.286 <0.001

TEMP -0.66 -0.496 0.017 -28.232 <0.001 -0.889 -0.668 0.013 -50.335 <0.001

Table 2. Linear coefficients of OLS and SAR regressions of log-transformed species richness in New World on seven environmental

variables.

Figure 1. A. Relationship between ln-transformed species richness of amphibians and tem-

perature for 4187 cells (1° x 1° latitude-longitude), covering the American continent. Tem-

perature is expressed as 1/kT, where k is Boltzmann’s constant and T is average annual

temperature in degrees Kelvin. B. Spatial patterns of Amphian richness in the New World.
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frameworks may be useful to define
further developments in both methodo-
logical and theoretical issues on MTE.
Classical hypothesis testing does not
provide strong support to the theory
when taking into account autocorrela-
tion in data, probably, because part of
the correlation between richness and
temperature may be due to intrinsic
spatial components. This suggests that
further developments may be necessa-
ry to establish data statements for
analysis (see Hawkins et al., 2007b)
and to establish expected slopes for
temperature taking into account its cor-
relation with other predictors, including
latent spatial structure and productivi-
ty variables (see Brown et al., 2004) in
a multivariate context.
Cassemiro et al. (2007) showed that
part of this correlation may also be due
to spatially structured variations, whi-
ch can be the cause of the non-statio-
narity in the relationship between ri-
chness and temperature, showed by
Geographically Weighted Regression
analysis (GWR). Another potential ex-
planation of non-stationarity is that the
effects of temperature on other varia-
bles that are assumed to be constant in
Allen et al.’s (2002) model (i.e., ave-
rage body mass and abundance) also
vary in space, generating then a syste-
matic lack of agreement with the MTE
prediction in some regions, but not in
others.
Until further developments for unders-
tanding the predictions of metabolic
theory in a multivariate context, a mo-
del selection framework seems to be
the best way to evaluate the role of
multiple predictors on species richness.
Analyses based both on OLS and SAR
suggest that temperature is of great
importance to species richness in New
World amphibians, although SAR co-
efficients in the multiple regression
model also do not represent direct su-
pport for metabolic theory. This may
be due to several reasons, especially
break with model assumptions such as
spatial variation in abundance and body
size (see Hawkins et al., 2007b). Also,
it is important to note that many am-

phibians species may thermorregulate
(Hutchinson and Dupré, 1992), there-
by not all species in this study can be
true ectothermics, as required for a
good test of metabolic theory. Thus,
this study provides the basis for further
refinements in the theory taking into
account the species physiology as well
as multivariate and multi-scale nature
of causal explanations for species ri-
chness.

Concluding remarks

There is no doubt that understanding
the origins of spatial autocorrelation
in geographical data is important both
to investigate the processes underlying
spatial patterns and to estimate para-
meters correctly. In this context, it is
important to realize that model selec-
tion procedures based on AIC values
may be also sensitive to the presence
of residual autocorrelation and, thus,
shifting from a classical hypothesis
testing to information theory or Baye-
sian approaches will not necessarily
‘eliminate the problem’ of spatial au-
tocorrelation in data. Despite this, our
analyses suggest that model selection
procedure using AIC based on OLS
and SAR models tend to find the same
models with a high number of predic-
tors, and with high certainty in model
choice. This may be due to great
amount of structure in our data, whi-
ch consequently leads to an easily in
establishing a rank of predictor impor-
tance. In general, temperature was
found to be an important predictor of
species richness in both frameworks,
although particular predictions of
MTE were not fully satisfied when
taking spatial autocorrelation into ac-
count.

Acknowledgments

 Work by F.A.S.C. and T.F.L.V.B.R. are
supported by a CAPES and CAPES/
Fulbright doctoral fellowships, where-
as work by J.A.F.D.F. and L.M.B. has
been continuously supported by seve-
ral CNPq and FUNAPE/UFG grants.

References

ALLEN, A.P.; BROWN, J.H. and GYLLOOLY,
J.F. 2002. Global biodiversity, biochemical ki-
netics and the energetic equivalence rule. Scien-
ce, 297:1545-1548.
ANSELIN, L. 2002. Under the Hood. Issues in
the specification and interpretation of spatial re-
gression models. Agricultural Economics,
27:247-267.
BAHN, V. and MACGILL, B. 2007. Can niche-
based distribution models outperform spatial in-
terpolation? Global Ecology and Biogeography,
16:733-742.
BORCARD, D.; LEGENDRE, P.; AVOIS-JA-
CQUET, C. and TUOMISTO, H. 2004. Dissec-
ting the spatial structure of ecological data at
multiple scales. Ecology, 85:1826-1832.
BROWN, J. H. 1995. Macroecology. Chicago,
University of Chicago Press, 284 p.
BROWN, J.L.; GILLOOLY, J.F.; ALLEN, A. P.;
SAVAGE, V. M. and WEST, G. B. 2004. Toward
a metabolic theory of Ecology. Ecology, 85:1771-
1789.
BURNHAM, K.P and ANDERSON, D.R. 2002.
Model selection and multimodel inference. A
practical information – theoretical approach.
New York, Springer, 284 p.
BURNHAM, K.P and ANDERSON, D.R. 2004.
Multimodel inference: understanding AIC and
BIC in model selection. Sociological Methods
and Research, 33:261-303.
CARL, G. and KUHN I. 2007. Analyzing spatial
ecological data using linear regression and wa-
velet analysis. Stochastic Environmental Rese-
arch and Risk Assessment, 22: in press.
CASSEMIRO, F.A.S.; BARRETO, B.S.; RAN-
GEL, T.F.L.V.B. and DINIZ-FILHO, J.A.F. 2007.
Non-stationarity, diversity gradients and the me-
tabolic theory of ecology. Global Ecology and
Biogeography, 16:820-822.
COHEN, J. 1994. The Earth is round (p < 0.05).
American Psycologist, 49:997-1003.
CRESSIE, N.A.C. 1993. Statistics for Spatial
Data. New York, Wiley-Interscience Publicati-
ons, 900 p.
DINIZ-FILHO, J.A.F. and BINI, L.M. 2005.
Modelling geographical patterns in species rich-
ness using eigenvector-based spatial filters. Glo-
bal Ecology and Biogeography, 14:177-185.
DINIZ-FILHO, J.A.F.; BINI, L.M. and HA-
WKINS, B.A. 2003. Spatial autocorrelation and
red herrings in geographical ecology. Global
Ecology and Biogeography, 12:53-64.
DORMANN, C.F. 2007. Effects of incorporating
spatial autocorrelation into the analysis of speci-
es distribution data. Global Ecology and Bioge-
ography, 16:129-138.
ELLISON, A.M. 2004. Bayesian inference in
Ecology. Ecology Letters, 7:509-520.
EVANS, K.L. and GASTON, K.J. 2005. People,
energy and avian species richness. Global Eco-
logy and Biogeography, 14:187-196.
FOTHERINGHAM, A.S.; BRUNSDON, C. and
CHARLTON, M. 2002. Geographically wei-

119a126_ART01_Cassemiro etal_NEO2[3]_OK.pmd 26/11/2007, 22:23125



Fernanda A .S. Cassemiro, José Alexandre Felizola Diniz-Filho, Thiago Fernando L.V. B. Rangel, Luís Maurício Bini

126 Volume 2 number 3 september - december 2007

ghted regression: the analysis of spatially varying
relationships. Chichester, Wiley, 282 p.
FORTIN, M.J. and DALE, M.R.T. 2005. Spatial
analysis: A guide for ecologists. Cambridge,
Cambridge University Press, 365 p.
GASTON, K.J. and BLACKBURN, T.M. 2000.
Pattern and process in macroecology. Oxford,
Blackwell Science, 377 p.
GRIFFITH, D.A. 2003. Spatial autocorrelation and
spatial filtering. Gaining understanding through the-
ory and visualization. New York, Springer, 247 p.
HAINING, R. 1990. Spatial data analysis in the
social and environmental sciences. Cambridge,
Cambridge University Press, 431 p.
HAINING, R. 2002. Spatial data analysis. Cam-
bridge, Cambridge University Press, 452 p.
HAWKINS, B.A. and PORTER, E.E. 2003. Re-
lative influences of current and historical factors
on mammal and bird diversity patterns in degla-
ciated North America. Global Ecology and Bio-
geography, 12:475-481.
HAWKINS, B.A.; ALBUQUERQUE, F.S. ;
ARAÚJO, M.B.; BECK, J.; BINI, L.M.; CA-
BRERO SAÑUDO, F.J.; CASTRO-PARGA, I.;
DINIZ-FILHO, J.A.F.; FERRER-CASTÁN, D.;
FIELD, R.; GÓMEZ, J.F.; HORTAL, J.; KERR,
J.T.; KITCHING, J.F.; LEÓN-CORTÉS, J.L.;
LOBO, J. M.D.; MONTOYA, D.; MORENO,
J.C.; OLALLA-TÁRRAGA, M.Á.; PAUSAS,
J.G.; QIAN, H.; RAHBEK, C.; RODRÍGUEZ,
M.Á.; SANDERS, N.J. and WILLIAMS, P.
2007a. A global evaluation of metabolic theory
as an explanation for terrestrial species richness
gradients. Ecology, 88:1877-1888.
HAWKINS, B.A.; DINIZ-FILHO, J.A.F.;  BINI,
L.M.; ARAÚJO, M.B.; FIELD, R.; HORTAL, J.;
KERR, J.T.; RAHBEK, C.; RODRÍGUEZ, M.Á.
and SANDERS, N. 2007b. Metabolic theory and
diversity gradients: where do we do from here?
Ecology, 88:1898-1902.
HAWKINS, B.A.; DINIZ-FILHO, J.A.F.; BINI,
L.M.; DE MARCO P. and BLACKBURN, T.
2007c. Red herrings revisited: spatial autocorre-
lation and parameter estimation in geographical
ecology. Ecography, 30:375-384.
HAWKINS, B.A.; PORTER, E.E. and DINIZ-
FILHO, J.A.F. 2003. Productivity and history as
predictors of the latitudinal diversity gradient of
terrestrial birds. Ecology, 84:1608-1623.
HILBORNE, M. and MANGEL, R. 1997. The
ecological detective: confronting models with data.
Princeton, Princeton University Press, 330 p.
HOBBS, N.T, and HILBORN, R. 2006. Alterna-
tives to statistical hypothesis testing in ecology: A
guide to self teaching. Ecology Applied, 16:5-19.
HOETING, J.A.; DAVIS, R.A.; MERTON, A.A.
and THOMPSON, S.E. 2006. Model selection
for geostatistical models. Ecological Applicati-
ons, 16:87-98.
HUTCHINSON, V.H. and DUPRÉ, R.K. 1992.
Environmental physiology of the amphibians. In:
M.E. FEDER and W.W. BURGGREN (eds.),
Thermoregulation. Chicago, University of Chi-
cago Press, p. 206-249.
JOHNSON, J.B. and OMLAND, K.S. 2004.

Model selection in ecology and evolution. Tren-
ds in Ecology and Evolution, 19:101-108.
KEITT, T.H.; BJØRNSTAD, O.N.; DIXON,
P.M. and CITRON-POUSTY, S. 2002. Accoun-
ting for spatial patterns when modelling orga-
nism-environment interactions. Ecography
25:616-625.
KÜHN, I. 2007. Incorporating spatial autocor-
relation may invert observed patterns. Diversity
and Distributions, 13:66–69.
Blackwell Publishing Ltd
KÜHN, I.: BIERMAN, S.M.: DURKA, W. and
KLOTZ, S. 2006. Relating geographical varia-
tion in pollination types to environmental and
spatial factors using novel statistical methods.
New Phitologist, 172:127-139.
LEGENDRE, P. 1993. Spatial autocorrelation:
trouble or new paradigm? Ecology, 74:1659-1673.
LEGENDRE, P. and LEGENDRE, L. 1998. Nu-
merical ecology. Amsterdam, Elsevier, 853 p.
LEGENDRE, P.; DALE, M.R.T.; FORTIN, M.J.;
GUREVITCH, J.; HOHN, M. and MYERS, D.
2002. The consequences of spatial structure for
the design and analysis of ecological field sur-
veys. Ecography, 25:601-615.
LENNON, J.J. 2000. Red-shifts and red herrings
in geographical ecology. Ecography, 23:101-113.
LICHSTEIN, J.W.; SIMONS, T.R.; SHRINER,
S.A. and FRANZREB, K.E. 2002. Spatial auto-
correlation and autoregressive models in ecolo-
gy. Ecological Monographs, 72:445-463.
LIEBHOLD, A.M. and GUREVITCH, J. 2002.
Integrating the statistical analysis of spatial data
in ecology. Ecography, 25:553-557.
NEW, M.G.; HULME, M. and JONES, P.D.
1999. Representing 20th century space-time cli-
mate variability. I: Development of a 1961-1990
mean monthly terrestrial climatology. Journal of
Climate, 12:829-856.
QUINN, J.F. and DUNHAM, A.E. 1983. On
hypothesis testing in ecology and evolution.The
American Naturalist, 122:602-617.
RANGEL, T.F.L.V.B.; DINIZ-FILHO, J.A.F.
and BINI, L.M. 2006. Towards an integrated
computational tool for spatial analysis in macro-
ecology and biogeography. Global Ecology and
Biogeography, 15:321-327.
RICHARDS, S.A. 2005. Testing ecological the-
ory using the information-theoretic approach:
examples and cautionary results. Ecology,
86:2805-2814.
SEGURADO, P.; ARAÚJO, M.B. and KUNIN,
W.E. 2006. Consequences of spatial autocorre-
lation for niche-based Models. Journal of Ap-
plied Ecology, 43:433-444.
STEPHENS, P.A.; BUSKIRK, S.W. and DEL RIO,
C.M. 2007. Inference in ecology and evolution.
Trends in Ecology and Evolution, 22:192-197.
TOHLGREN, T.J.; BARNETT, D.; FLATHER,
C.; KARTESZ, J. and PETERJOHN, B. 2005.
Plant species invasions along the latitudinal gra-
dient in the United States. Ecology, 86:2298-2309.
STUART, S.N.; CHANSON, J.S.; COX, N.A.;
YOUNG, B.E.; RODRIGUES, A.S L.; FISCH-
MAN, D.L. and WALLER, R.W. 2004. Status

and trends of amphibian declines and Extincti-
ons worldwide. Science, 306:1783-1786.
TOGNELLI, M.F. and KELT, D.A. 2004. Analy-
sis of determinants of mammalian species rich-
ness in South America using spatial autoregres-
sive models. Ecography, 27:427-436.

Submitted on June 11, 2007
Accepted on August 06, 2007

119a126_ART01_Cassemiro etal_NEO2[3]_OK.pmd 26/11/2007, 22:23126



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Right
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.2
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


