
Journal of Applied Computing Research, 5(1):17-31
January-June 2016
Unisinos - doi: 10.4013/jacr.2016.51.02

Abstract. The complexity of applications in the mobile crowdsensing domain is due to factors such as in-
teroperability among heterogeneous devices, recruiting of devices, collection of data from these devices, and
adaptation of application operation in dynamic environments. This paper introduces a platform based on
models at runtime (M@RT) for the development of the mobile crowdsensing functionality of applications.
The platform supports model-based creation and processing of queries that target a distributed and dynam-
ic set of sensor-capable devices. The paper also presents the results of an evaluation that shows the impact
of runtime model processing on the performance of applications in mobile crowdsensing scenarios.

Keywords: participatory sensing, models at runtime, model execution engine, mobile computing.

1 This article is an extended version of the paper presented by the authors at the 7th SBCUP -Simpósio Brasileiro de Computação
Ubíqua e Pervasiva, an event of the 35th Congresso da Sociedade Brasileira de Computação, Recife (PE, Brazil), July 20-23, 2015.

Enabling Dynamic Crowdsensing through Models@Runtime1

Paulo Cesar Ferreira Melo, Ricardo Couto Antunes da Rocha, Fabio M. Costa
Universidade Federal de Goiás, Instituto de Informática
Alameda das Palmeiras, Quadra D, Campus Samambaia, 74690-900, Goiânia, GO, Brasil
pcfm.inf@gmail.com, ricardo@inf.ufg.br, fmc@inf.ufg.br

Introduction

Crowdsensing refers to the opportunistic
or participatory use of a large array of sensors
embedded in current general purpose mobile
devices for the purpose of measuring and
mapping interesting phenomena by means of
the collaborative sharing of sensors (Ganti et
al., 2011). The development of mobile crowd-
sensing applications poses a number of chal-
lenges, such as interoperability among differ-
ent mobile devices, recruiting of appropriate
devices to serve as data sources, collection of
data from those devices, and runtime adapta-
tion of the applications to work properly in
dynamic environments.

A number of platforms for crowdsensing
have been developed, such as Medusa (Ra et
al., 2012), Vita (Chan et al., 2013) and MobIoT
(Hachem et al., 2014). They address challenges
such as facilitating application development,
supporting efficient and scalable dissemina-
tion of sensor data, enabling mobility man-
agement of crowdsensing applications, and
providing incentives for participatory sensing.
However, the programming model of existing
platforms hinders the development of dynam-

ic and spontaneous applications when it comes
to enabling rapid user-directed development
and dynamic change of application behavior.
This is a particularly important requirement
for ephemeral applications in scenarios such
as disaster recovery and environmental moni-
toring for short-lived purposes.

This paper presents CSVM (CrowdSens-
ing Virtual Machine) (Melo, 2014), a plat-
form driven by models@runtime (Blair et al.,
2009) that enables the creation and execution
of mobile crowdsensing queries by means of
the specification and interpretation of models
described in a domain-specific modeling lan-
guage called CSML (CrowdSensing Modeling
Language). The use of models@runtime allows
the description of the dynamic behavior of ap-
plications (Wang et al., 2008), including those
used for crowdsensing, thus enabling runtime
adaptation of such behavior.

In general, the use of a model-based ap-
proach enables significant shortening of the
semantic gap between the problem to be
solved and the platform being used, promot-
ing the use of abstractions that are closer to the
problem domain and, thus, more accessible to
end users. Specifically in our case, the mod-

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC
BY 4.0), which permits reproduction, adaptation, and distribution provided the original author and source are credited.

18 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

els@runtime approach promotes the use of a
causally connected representation of both the
crowdsensing environment and the queries
that are submitted for processing. This ena-
bles dynamic adaptation of the crowdsensing
environment and applications in response to
device mobility and reconfiguration, as well as
to the need to change ongoing queries.

The remainder of this paper is organized
as follows. An approach for mobile crowdsens-
ing based on M@RT presents our motivation
scenario and provides an overview of our ap-
proach in the domain of mobile crowdsens-
ing. The CSML modeling language presents the
CSML language, while CSVM platform archi-
tecture describes the architecture of the CSVM
platform, which executes CSML models,
while Implementation outlines its implementa-
tion. Experiments and evaluation presents a set
of practical experiments that demonstrate the
capabilities of the platform, together with re-
sults of a performance evaluation of the differ-
ent phases of model execution. Finally, Related
work discusses related work, and Concluding
remarks reviews the main contributions and
discusses future work.

An approach for mobile
crowdsensing based on M@RT

Mobile crowdsensing environments encom-
pass a variety of applications that need to com-
municate and exchange data derived from sen-
sors embedded in mobile devices. The essence
and major challenges in such environments lie
in the amount and diversity of devices, in the
dynamic nature of typical scenarios, and in the
process of selecting the appropriate devices to
fulfill a given request for distributed sensing
data (Ganti et al., 2011). In general, platforms
for crowdsensing need to identify and select
devices and their sensors based on require-
ments previously specified by users and/or
developers, typically using a domain-specific
language. Such platforms also aim to abstract
vendor-specific details of how different physi-
cal devices and their sensors are accessed. In
addition, some platforms, such as Medusa (Ra
et al., 2012) and Vita (Chan et al., 2013), focus on
efficient and scalable dissemination of sensor
data and on the economic issue (sensor provi-
sion vs. data demand). These solutions assume
that a crowdsensing application must be previ-
ously planned (in the form of sensor queries) in
terms of knowledge of sensor availability and
considering a static interest in sensor data.

Provision of sensor data (by devices) is
dynamic and, in some cases, unpredictable.
Thus, requiring, from the application devel-
oper, knowledge of the crowdsensing envi-
ronment may hinder the development of op-
portunistic and volatile applications. We argue
in favor of the development of platforms for
crowdsensing applications that aim at dynam-
ic and spontaneous scenarios, such as in the
examples that follow:

• Support for disaster recovery through the
recruiting of available sensors, for instance,
in situations like flooding and firefighting.

• Support for users in an open-air concert
trying to use other sensors spread across
the place to build a better concert expe-
rience, e.g., to find a spot with a better
sound quality.

• Exploratory usage of distributed sensor
data by spontaneous applications.

Development of crowdsensing application
in such scenarios demands (i) fast application
prototyping and setup; (ii) user-friendly dis-
covery of distributed sensor collections; (iii)
dynamic update of sensor queries and fre-
quent readjustment of crowdsensing applica-
tions; and (iv) a user-centered approach.

In order to overcome these challenges, we
propose a platform driven by models@runtime
for mobile crowdsensing applications called
CSVM (CrowdSensing Virtual Machine). The
platform materializes our approach to fulfill
the following goals:

• Dynamically adapt to changes in the
crowdsensing environment, by adjusting
the set of selected devices and sensors in
a way that ensures quality of the sensor
data requested by applications; and

• Allow users to alter queries on-the-fly,
especially in the case of long-running
queries, in a way that reflects on how the
platform behaves in relation to execution
of the query.

The rationale behind the design of CSVM
is that the use of models@runtime enables ef-
fective programming of crowdsensing appli-
cations through a modeling language (CSML).
The causal connection between the model and
the running system allows both the platform
to reproduce the behavior described in a high-
level model, and the model to describe runt-
ime changes of the environment. As a conse-
quence, the approach proposed in this work
does not require application users and devel-

19Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

opers to be specialists in the domain of crowd-
sensing, as it facilitates the specification and
adaptation of queries by means of high-level
models that abstract the operational details
and the heterogeneity of the environment.

The CSML modeling language

CSML is a domain-specific modeling lan-
guage for the domain of mobile crowdsens-
ing. It allows the creation and runtime ma-
nipulation of models that describe queries
and their execution, as well as other elements
of the domain. It allows users and developers
to concentrate on the declarative features of
the crowdsensing tasks, abstracting away the
details of how the CML executor carries out
those tasks. In its current implementation, the
syntax of CML is based on XML.

CSML constructs enable the modeling of
two major functionalities required by crowd-
sensing applications, namely device registra-
tion, which integrates the device as part of the
crowdsensing environment, and query speci-
fication, which allows users to create queries
that involve sensor data gathered from multi-
ple devices. These two functionalities are spec-
ified in the form of two kinds of sub models,
also called schemas: control schema (CS) and
data schema (DS). Control schemas are models
that represent logical crowdsensing configura-
tions and are further subdivided into environ-
ment control schemas (ECS) and query control
schemas (QCS). The constructs used to specify
schemas are defined in the CSML metamodel,
which in turn is defined according to OMG’s
metamodeling architecture, the Meta-Object
Facility (MOF) (OMG, 2008).

An ECS describes the crowdsensing envi-
ronment by means of the components present-
ed in Table 1. It thus serves as a representation
of the devices that are available in the environ-
ment, including the individual sensors that are

made available by each device and the specifi-
cation of how their provided sensor data are
handled and communicated.

A QCS, in turn, is a model at runtime that
specifies one or more queries in terms of the
desired types and number of sensors, their lo-
cation, data collection and combination opera-
tions (as defined in Table 1), and the type of
notification. As an example, a QCS can be used
to describe a query to measure air moisture
(sensor type) in a given indoor environment
(location) by means of data collected from 10
devices spread across the environment, such
that the application is notified whenever the
average air moisture reaches a threshold.

Data schemas (DS), in turn, are different
from the above two kinds of schemas, which
are explicitly created by a user or application
developer. A DS is automatically created by
the platform as a result of processing a pre-
viously created QCS. A DS thus represents
an empty form, which contains fields such as
value (to contain actual data collected from a
sensor), data type of the value, unit of meas-
urement, sensor type, precision, and time of
data collection. A DS also contains data that
describe a request (which is the act of send-
ing a DS form to a device), such as the type
of the request (which specifies how requests
are sent – unicast, multicast or broadcast), the
notification type (which specifies when replies
are sent as response to requests, such as when
an event occurs or on a periodic basis), and the
identifier of the query that generated the DS.
Examples of data and control schemas are pre-
sented in Using the CSML language.

Using the CSML language

In this section we demonstrate the use of
the CSML language to create control schemas
(both ECS and QCS). For this purpose, we
use the XML-based syntax of CSML, called

ECS Component Description Example
Device Device make and model A given Android smartphone model #
Sensor list Sensors made available by the device Location, temperature

Operation Operations to collect data from multiple
sensors of the same type Average of temperatures

Combination
type

Method of combination of data from sensors
of different types

Aggregation of temperature and
location

Notification type Method of sensor data notification Event-based or periodic

Table 1. Components of an ECS model.

20 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

X-CSML. We aim to demonstrate the appli-
cability of CSML models in a typical scenario
where crowdsensing functionality is required.
The scenario can be described as follows.

“The new manager of a nightclub, among
his many responsibilities, is in charge of
monitoring the ambient temperature inside
the premises whenever the house is open for
events. His aim is to maintain a comfortable
environment for the customers, as well as to
detect hazardous situations, such as the start
of a fire. To carry out his task, the manager was
instructed to use an app for temperature mon-
itoring that was installed in his smartphone.
The app uses the crowdsensing services of
the CSVM platform for the collection of tem-
perature data from sensors spread across the
environment. In addition, frequent customers
of the nightclub are invited to install a cor-
responding app on their smartphones. They
agree to provide sensing information from
their smartphones’ sensors, whenever they are
in the nightclub, in exchange for a safer envi-
ronment and, obviously, a half-price discount
in the admission ticket.”

As part of the above scenario, all the in-
volved devices (smartphones belonging to
the manager and to the customers) need to
register in the CSVM platform so that they are
able to submit crowdsensing queries and to
provide sensing data to the platform. Figure 1

presents the CSML control schema (repre-
sented in X-CSML) that is generated when the
nightclub manager requests registration of his
device. This control schema is built as a frag-
ment of the environment control schema (ECS)
and is submitted to the CSVM platform, where
it becomes part of the ECS that represents the
entire crowdsensing environment. Similar
control schemas are generated and submitted
to CSVM whenever a customer registers his or
her device.

After registration, the manager is able to
specify queries that use the crowdsensing ser-
vices of the platform. In general, such queries
are generated to answer high-level questions
such as: “What is the average room tempera-
ture at a given part of the nightclub?” Such
questions are specified in a user-friendly inter-
face provided by the app that was previously
installed in the manager’s smartphone. The
app then uses client-side functionality of the
CSVM platform to convert the question into a
more specific query such as “I need information
from 10 sensors of type ‘temperature’ at a location
‘bar’.” We assume the availability of an indoor
location system that allows the current loca-
tion of devices to be determined by the plat-
form. The location system, however, is out of
scope in this work.

Figure 2 presents the query control schema
that was generated in response to the manager’s

Figure 1. X-CSML representation of a control schema used to register a device in the CSVM platform.

<?xml version=”1.0” encoding=”UTF-8”?>
<xcsml>
 <controlSchema>
 <envControlSchema>
 <registration registerID=”1”>
 <device>
 <type>
 <brand>Samsung</brand>
 <model>Galaxy S5</model>
 <os>Android OS</os>
 <category>Smartphone</category>
 </type>
 <owner>John</owner>
 <deviceSensor>
 <sensorType id=”1”>temperature</sensorType>
 <sensorType id=”2”>humidity</sensorType>
 <sensorType id=”3”>audio</sensorType>
 <sensorType id=”4”>geolocation</sensorType>
 </deviceSensor>
 </device>
 </registration>
 </envControlSchema>
 </controlSchema>
</xcsml>

21Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

query. The operation kind (average – avg) and
the request type (onDemand) are also specified
as part of the query. The next step is to submit
the query (the QCS) to the server side of CSVM,
which then creates an instance of the QCS by
selecting and recruiting the actual devices that
will provide sensor data to answer the manag-
er’s query. A description of the recruited devic-
es is added to the QCS instance to facilitate its
processing by the platform, especially consid-
ering the management and runtime adaptation
of the set of devices selected to answer each
crowdsensing query. The mechanics of QCS in-
stance generation and processing is described in
CSVM platform architecture. The generated QCS
instance is partly shown in Figure 3, which, for
brevity, omits the description of some of the re-
cruited devices. A complete version of this QCS
instance can be found in Melo (2014).

After generating the QCS instance, the plat-
form then generates a data schema (DS) for the
query. Figure 4 presents the X-CSML repre-
sentation of the data schema, which contains a
form to be sent to each recruited device, along
with a list of all the devices recruited for the
query. The request that is actually sent to the
devices is thus an empty form, which should
be filled by the device with actual sensor data.
Thus, after receiving such a form (i.e., a data
schema), each device initiates its part in the
monitoring of the environment. The result is
a sequence of data schema instances that each
device sends to the server side of the platform,
containing the requested sensor data. Figure
5 shows an example of a DS instance (a filled
form) received from one of the recruited de-
vices. After receiving the DS instances from all

the recruited devices, the platform composes
a reply that is then sent to the requesting cli-
ent (the app running on the manager’s smart-
phone). The reply is composed by combining
all the received sensor data in the way that was
specified in the QCS (Figure 2) and takes the
form of a DS instance similar to the one shown
in Figure 5.

Note that the CSML language is meant for
modeling all aspects of a crowdsensing envi-
ronment. This includes its direct use by the
end-user (to contribute in the creation of the
ECS and to create QCSs) and by the platform,
which automatically generates CSML models
(data schemas) for the processing of queries.
The next section describes the processing of
CSML models by the platform.

CSVM platform architecture

The architecture of mobile crowdsensing
platforms generally comprises two kinds of
components: one that represents the devices
that are responsible for collecting and propa-

Figure 2. Query control schema (QCS).

<?xml version=”1.0” encoding=”UTF-8”?>
<xcsml>
 <controlSchema>
 <queryControlSchema>
 <subscription subscriptionID=”1”>
 <aggregation />
 <sensorTypeRequest id=”1”>
 <type>temperature</type>
 <quantity>10</quantity>
 <location>boate x</location>
 <operation>avg</operation>
 <request>onDemand</request>
 </sensorTypeRequest>
 </subscription>
 </queryControlSchema>
 </controlSchema>
</xcsml>

Figure 3. Query control schema instance.

<?xml version=”1.0” encoding=”UTF-8”?>
<xcsml>
 <controlSchema>
 <queryControlSchema>
 <subscription subscriptionID=”1”>
 <aggregation />
 <sensorTypeRequest id=”1”>
 <type>temperature</type>
 <quantity>10</quantity>
 <location>boate x</location>
 <operation>avg</operation>
 <request>onDemand</request>
 <device id=”1”>
 <type>
 <brand>Samsung</brand>
 <model>Galaxy S5</model>
 </type>
 <owner>John</owner>
 </device>
 ...
 <device id=”20”>
 <type>
 <brand>LG</brand>
 <model>Nexus 4</model>
 </type>
 <owner>Taylor</owner>
 </device>
 </sensorTypeRequest>
 </subscription>
 </queryControlSchema>
 </controlSchema>
</xcsml>

22 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

gating sensor data, and another that represents
the service in charge of analyzing and process-
ing the sensor data gathered from the devices
(Ganti et al., 2011). Following this generic ap-
proach, this work proposes an architecture
comprised by a central component (CSVM-
Provider), which has a single instance in the
system and represents the provider of the
crowdsensing service, and a distributed com-
ponent (CSVM4Dev), which is instantiated in
each mobile device that is part of the environ-
ment. In the above discussion (Using the CSML
language), these two components were referred
to, respectively, as the server and client sides
of the platform. In the remainder of this sec-
tion, we describe the architecture of these
two components, together with a description
of how they cooperate to process control and
data schemas. We also provide some details
about their implementation.

CSVMProvider

The CSVMProvider component is respon-
sible for the interpretation of user models
(schemas) in order to determine the actions
that need to be taken by the platform so that
the user’s intention, expressed in the models,

is effectively carried out. Those actions are
expressed in terms of query functionality and
dynamic management of the devices that par-
ticipate in the crowdsensing environment. The
component has a three-layer architecture, as
shown in Figure 6 and described next.

Crowdsensing Synthesis Layer (CSS).
This layer is responsible for the interpretation
of X-CSML models, synthesizing them in the
form of commands to be executed by the un-
derlying layers. The declarative definitions in
the models (e.g., in query control schemas) are
thus transformed into procedural definitions
that drive the platform behavior to fulfill the
user’s intention. This approach, and in fact
the entire layered architecture of CSVM, was
inspired by the architecture of the CVM plat-
form, as proposed by Clarke et al. (2006).

The CSS layer also plays a role in main-
taining the model@runtime, which is divided
in two parts: one that reflects the structure of
currently running queries and another that re-
flects the state of the environment. The former
corresponds to the user-defined QCSs, while
the latter refers to the ECS. We first consider
the maintenance of the part of the model@
runtime that represents queries.

During execution of a query the user can
make modifications in its model (QCS), re-
submitting it to the platform as an intention
to change the functionality of the query. The
CSS layer isolates the specific changes by an-
alyzing the differences between the old QCS
model and the new one, which results in the
generation of commands (for the underlying

Figure 4. Data schema.

<?xml version=“1.0“ encoding=“UTF-8“?>
<xcsml>
 <dataSchema>
 <request requestID = “1”>
 <queryControlSchemaID>1</queryControlSchemaID>
 <type>multicast</type>
 <period>onDemand</period>
 <form>
 <sensorInformation>
 <sensorType>Temperature</sensorType>
 <value></value>
 <dataType></dataType>
 <unit></unit>
 <timeStamp></timeStamp>
 <accuracy></accuracy>
 </sensorInformation>
 </form>
 <deviceRequest>
 <deviceID>1</deviceID>
 <deviceID>2</deviceID>
 <deviceID>3</deviceID>
 <deviceID>4</deviceID>
 <deviceID>5</deviceID>
 <deviceID>6</deviceID>
 <deviceID>7</deviceID>
 <deviceID>8</deviceID>
 <deviceID>9</deviceID>
 <deviceID>10</deviceID>
 </deviceRequest>
 </request>
 </dataSchema>
</xcsml>

Figure 5. Data schema instance.

<?xml version=“1.0“ encoding=“UTF-8“?>
<xcsml>
 <dataSchema>
 <notification notificationtID = «1»>
 <requestID>1</requestID>
 <type>multicast</type>
 <period>onDemand</period>
 <form>
 <sensorInformation>
 <sensorType>Temperature</sensorType>
 <value>23</value>
 <dataType>Ambient temperature</
dataType>
 <unit>degree Celsius</unit>
 <timeStamp>2014-01-23 23:15:00</
timeStamp>
 <accuracy>3</accuracy>
 </sensorInformation>
 </form>
 </notification>
 </dataSchema>
</xcsml>

23Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

layer) that correspond to those differences.
This is particularly effective for long-running
queries (such as one that asks for continuous
updates of the sensing information provided
by sensors at a given location), for which new
requirements may arise during execution. For
instance, the user may decide to include a new
type of sensor in a query. This change will re-
sult in commands for the layer below to ini-
tiate the selection and recruitment of further
devices (besides those that are already taking
part in the query) and/or the enlisting of other
sensors belonging to devices that have already
been recruited, in order to provide the extra
sensing information. In addition, this part of
the model@runtime may also be updated as a
result of events from the environment. For in-
stance, when all devices that provide a given
sensor type leave the environment, the QCSs
that referred to that type are changed to re-
flect the fact, so that users know that the cor-
responding feature is no longer available.

We now consider the maintenance of the
part of the model@runtime that represents the
environment. This is usually the result of devic-
es entering and leaving the environment. When
a device enters the environment, its registration
control schema is processed and incorporated
into the ECS. Similarly, when a device leaves,
its description is removed from the ECS. Thus,
the ECS always reflects the current state of the
environment in terms of the devices that are
currently available for crowdsensing.

Crowdsensing Middleware layer (CSM).
This layer of CSVMProvider is responsible for
the selection of devices based on information
from the model@runtime, notably information
about the capabilities and location of devices.
Such information is obtained from the part of
the model@runtime that corresponds to the
environment: the environment control schema
(ECS). The CSM layer interacts with the other
two layers by processing commands issued by
the top layer (CSS), and by generating lower-
level commands to be executed by the layer
below. The CSM layer processes CSS com-
mands by matching them with the existing ca-
pabilities that are present in the environment
(and represented in the ECS). One such com-
mand may be “select 10 devices that provide
temperature sensors”. The processing of all
commands generated from a QCS thus results
in the generation of a QCS instance (such as
the one shown in Figure 3). This QCS instance
becomes part of the model@runtime of the
query (complementing the part of the model@
runtime of the query maintained by the CSS
layer). The CSS layer then processes the QCS
instance to generate commands for the bottom
layer (CSB) to actually recruit each of the se-
lected devices.

The CSM layer also plays a role in the main-
tenance of the model@runtime, notably with
respect to currently running queries. This is
necessary due to the volatility of the environ-
ment, where devices come and go all the time,
which in turn requires continuous update of
the QCS instance part of the model@runtime,
followed by the generation of commands (for
the bottom layer) that effectively adapt the
query during its execution. For instance, when
a device leaves the environment, all queries to
which it contributed with sensing data need to
be adapted by selecting substitute devices.

In future versions of the platform, the CSM
layer will also be responsible for the addition
of non-functional properties in query process-
ing and device registration, especially in the
case of security aspects, such as confidential-
ity, integrity and authentication.

Crowdsensing Broker layer (CSB). This
layer is in charge of the actual interaction with
the devices that provide sensing capabilities
for the platform. Its main responsibility is to
recruit the devices selected by the CSM layer
(in response to commands received from that
layer). This involves the following three func-
tionalities: masking the heterogeneity of the
devices by means of adaptors that allow seam-

Figure 6. Architecture of the CSVMProvider com-
ponent.

24 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

less access to different kinds of devices and
their resources (e.g., Android and iOS smart-
phones); monitoring of devices to detect when
they leave the environment (in such cases, the
CSB layer generates events to the upper layer
so that it may select a substitute device); and
communication with the mobile devices.

CSVM4Dev

This is the component of CSVM that runs
on the devices and allows them to be integrat-
ed in the platform. It also provides the user
interface that allows the modeling of queries
(i.e., the creation of query control schemas).
Similarly to CSVMProvider, it has a layered
architecture, as shown in Figure 7, which fa-
cilitates its implementation for different mo-
bile device technologies. Differently from CS-
VMProvider, CSVM4Dev has an additional
layer, the CrowdSensing Application layer
(CSApp), which provides a user interface
(GUI) and a programming interface (API) for
end-users and applications to interact with the
platform. In particular, this layer provides a
modeling environment for users to create and
submit device registration models and query
models (QCS). The CSApp user interface also
exposes events that could not be handled by
the lower layers, such as when a given user
query cannot be satisfied by the platform, e.g.,
when there are not enough devices to provide
a given type of sensor. As a response, the user
can either change (and resubmit) the QCS for
the query or completely withdraw the query.

The other layers of CSVM4Dev have simi-
lar, but more limited, responsibilities com-
pared to their CSVMProvider counterparts.
The CSS layer is in charge of validating the
models created by users and converting them
into text-based X-CSML models before send-
ing them to the CSVMProvider component.
The CSM layer, in turn, is in charge of ap-
plying non-functional properties to queries
and device registration, such as security and
privacy. Its current implementation, though,
deals only with privacy issues, by filtering
any attempt to access sensors that were not
explicitly exposed by the user when he or she
registered the device. Last but not least, the
CSB layer is responsible for the access to the
resources of the device (notably its embedded
sensors) and for communication with the CS-
VMProvider component.

The remainder of this section describes the
interaction protocols that these components

follow in order to perform the platform’s
crowdsensing functions.

Device registration

Device registration precedes all other func-
tionalities of the platform and is illustrated in
Figure 8 in terms of the interactions between the
CSVM4Dev and CSVMProvider components.

The first stage comprises registration of the
device with the communication service so that
it is enabled to receive queries sent by CSVM-
Provider (steps r1 and r2 in Figure 8). Next, the
user must prepare the device for registration
by specifying a model (a control schema) that
expresses the device’s characteristics (make
and model, owner ID, and the sensors that
will be available for crowdsensing). CSVM-
4Dev then sends the device’s control schema
to CSVMProvider as part of a registration re-
quest (step r3). CSVMProvider then validates
the control schema (to verify that the informa-
tion it contains is complete) and registers the
device in its repository (step r4), effectively

Figure 7. Layered architecture of the CSVM4Dev
component.

25Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

adding the device’s description to the envi-
ronment control schema (ECS). Finally, the
successful registration is notified to the device
(step r5).

Once registered, the device is enabled to
submit crowdsensing queries to the platform,
as well as to collaboratively participate in the
provision of sensor data to answer crowd-
sensing queries made by users of other reg-
istered devices.

Query processing

The main service in the domain of crowd-
sensing corresponds to the specification and
processing of queries. A query refers to a set
of sensors, specified in terms of their attributes
(type of sensor, location and quantity). Query
processing is also illustrated in Figure 8, which
represents the phases of query submission and
notification of the requested data, which will
be detailed next.

Query submission (step c1) refers to the
initial steps in the processing of a query (QCS)
specified by the user. It exposes the user’s in-
terest in sensor data in a particular location,
noting that a single query can refer to more
than one type of sensor and can combine dif-
ferent types of data to derive compound sens-
ing information.

After receiving a query, CSVMProvider in-
terprets it, generating a series of transactions
to get device information from the ECS stored
in the repository (step c2). This information
is used to select a set of devices to satisfy the
query, effectively resulting in the generation
of a QCS instance, which is the model@runt-
ime that will direct the remainder of the query

execution. The next step involves the genera-
tion of a data schema (DS), which is sent in the
form of a request to the CSVM4Dev compo-
nent running on each of the selected devices
(steps c3 and c4). As a response to these re-
quests, each CSVM4Dev obtains the requested
sensor data and sends a notification to CSVM-
Provider. This phase is described next.

Notification refers to the final phase of
query processing. CSVM4Dev processes the
received DS and accesses the sensors speci-
fied in it to capture the requested sensor
data. It then encapsulates the sensor data in
a DS instance, which is then notified back to
CSVMProvider (step c5). As it receives the
notifications from the selected devices, CS-
VMProvider applies the combination opera-
tion associated to each of the involved sensor
types, such as the calculation of an average. At
completion of this processing, CSVMProvider
builds a DS instance containing the result of
the query and sends it to the device that sub-
mitted the query (steps c7 and c8). Finally, the
query result is presented by CSVM4Dev to the
user or application that generated the query.

Implementation

In this section we briefly describe some as-
pects of a proof-of-concept prototype of the
CSVM platform. The prototype comprises an
implementation of the CSVMProvider and CS-
VM4Dev components. CSVM4Dev was imple-
mented for the Android mobile operating sys-
tem. Communication between CSVMProvider
and CSVM4Dev was implemented using two
different technologies: RESTfull for commu-
nication from CSVM4Dev to CSVMProvider,

Figure 8. Device registration and query processing.

26 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

and GCM (Google Cloud Messaging) for com-
munication from CSVMProvider to CSVM-
4Dev. The latter was chosen because it is the
de facto standard for communication with An-
droid mobile devices, and also because it sup-
ports device mobility in a seamless way.

CSVMProvider was implemented in Java.
Its implementation is encapsulated as a Web
service that provides a RESTful interface (using
the JAX-RS API and JSON for the formatting of
communicated data). CSVMProvider is execut-
ed on top of an Apache Tomcat container.

Persistence of the data and control schemas
was achieved using the SQLite library, which
was used to implement the repository referred
to in CSVM platform architecture. The mapping
between Java objects and the relational MySQL
database is performed using Hibernate.

The complete implementation comprises 85
Java classes that implement the services and pro-
cesses described in CSVM platform architecture.

Experiments and evaluation

In this section we present a series of experi-
ments that provide the basis for a performance
evaluation of the platform. The experiment
uses synthetic (as opposed to real) scenarios in
order to highlight important aspects of crowd-
sensing performance, enabling a performance
evaluation of the critical phases of query pro-
cessing at different scales. The aim is to show
that the overhead imposed by model genera-
tion and interpretation can be reasonably tol-

erated, even in extreme scaling conditions,
given the performance requirements of typical
mobile crowdsensing applications.

The two phases of crowdsensing query
processing considered in this evaluation are
the interpretation of query control schema
(QCS) and the processing and aggregation of
data schemas (DS). The experiment simulates
an environment with 100 mobile devices. Each
simulated device has 15 different sensor types
and is located at a specified logical location.
The environment control schema (ECS) con-
taining the description of all the devices was
pre-loaded in the repository. Four variants of
the experiment were executed:

Experiment 1: Processing of the QCS vary-
ing the number of recruited devices for a
single sensor type.
Experiment 2: Processing of the QCS vary-
ing the number of sensor types.
Experiment 3: Processing and aggregation
of a DS varying the number of devices for a
single sensor type.
Experiment 4: Processing and aggregation
of a DS varying the number of sensor types.

The experiment was set up on a computer
with an AMD quad-core 2.4GHz processor,
4GB RAM and Windows 8.1 64 bits to run the
CSVMProvider component, and a Samsung
Galaxy SIII smartphone with Android 4.3 as
the mobile device to run the CSVM4Dev com-
ponent. All variations of the experiment are

Figure 9. Query processing time as a function of the number of devices involved in the query.

27Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

thus carried out using a single mobile device,
which is used to simulate the other devices
when necessary. This arrangement does not
compromise the results, as the experiments
only evaluate the model processing steps that
occur in the CSVMProvider component, with-
out considering the steps that are carried out
in the mobile devices and the communication
with them.

Each experiment was carried out for 10
different configurations, varying either the
number of devices or the number of sen-
sor types involved in a query, as described

above. For each such configuration, 10 runs
were carried out, yielding a total of 100 runs
for each experiment. The average execution
time for each configuration was computed
after eliminating the outlier results, which
contributed to minimize the error in the ex-
periments. In addition, we also subtracted
the time taken for database access from the
total execution time of each run of the ex-
periment. The rationale behind this is the
fact that database access proved to be a ma-
jor bottleneck, which points to the need for
a lighter approach to implement the mod-

Figure 10. Query processing time as a function of the number of sensor types specified in the query.

Figure 11. Time for processing and aggregation of a data schema as a function of the number of devices.

28 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

el@runtime repository in our future work.
Thus, we opted for isolating the time that
was strictly consumed by model processing
tasks. The results are presented in Figure 9
through Figure 12.

Figures 9 and 10 correspond to experi-
ments 1 and 2 and thus present the average
time for processing a query, respectively, as a
function of the number of devices (consider-
ing a single sensor type) and as a function of
the number of sensor types specified in the
query. In both experiments, the processing
time consistently increases as the other two
variables (number of devices and number of
sensor types) increase. In the first example
(Figure 9) we increase the number of devices
more rapidly at the end (25, 50 and 100), only
to show that the increase in processing time
remains linear, which provides a good indi-
cation that query processing scales to large
numbers of devices. The second experiment
(Figure 10) also produced a linear processing
time for queries when the number of sensor
types increases.

The graphs in Figures 11 and 12, in turn,
present the average time to process sensor data
received from the devices (in the form of data
schema instance notifications), again as a func-
tion of the number of devices and the number
of sensor types, respectively. As in the previ-
ous experiments, processing time consistently
increases as the other two variables increase.
As a matter of comparison, however, process-
ing times are an order of magnitude higher

than in the previous experiments. This is due
to the fact that the amount of operations per-
formed by CSVMProvider in this case (for the
combination of sensor data from multiple data
schema instances) is much higher than for the
interpretation of query control schemas. Nev-
ertheless, the increase is linear in both cases.

The results allow us to draw conclusions
about the degree of scalability of CSVM in
its current implementation. Although the
experiments show consistent increase in the
processing time for both queries and reply
notifications, this increase is linear, which
provides reasonable scalability. Furthermore,
within reasonable scaling limits, processing
time remains within acceptable bounds for
applications that can tolerate response times
in the order of a few seconds, which is a typi-
cal case for the class of mobile crowdsensing
applications that we target (and which are
represented by the scenario described in Us-
ing the CSML language), as well as for a class
of medium-scale crowdsensing applications
commonly found in the literature (Mathur et
al., 2010). Nevertheless, for future work we
plan to investigate techniques to improve
the performance, especially for the process-
ing of reply notifications. We note that the
current implementation was developed as a
proof-of-concept prototype for model-driven
control of crowdsensing functionality, with
no specific considerations for performance,
which means that there is room for perfor-
mance improvements.

Figure 12. Time for processing and aggregating a data schema as a function of the number of sensor types.

29Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

Related work

In this section we compare the CSVM ap-
proach with related work in platforms for
crowdsensing (Platforms for Crowdsensing) and
model execution engines (Model-based Virtual
Machines).

Platforms for crowdsensing

In our comparison we only considered
platforms that provide a complete infrastruc-
ture for mobile crowdsensing, including an
approach for application development, data
provision on each sensor’s host and a distrib-
uted architecture for disseminating data to in-
terested applications.

We considered three representatives of the
state-of-the-art platforms for crowdsensing:
Medusa (Ra et al., 2012), Vita (Chan et al., 2013)
and MobIoT (Hachem et al., 2014). They focus
on different aspects of crowdsensing such as
incentives for data publishing (Medusa), task
management (Vita), and optimal query execu-
tion (MobIoT).

Medusa (Ra et al., 2012) adopts a domain-
specific language based on XML, called Med-
Script, for the specification of crowdsensing
queries. It allows the description of queries in
terms of a series of stages (actions), which are
connected by flow control elements. In fact,
a crowdsensing application describes a con-
trol-flow that connects sensor providers and
users through a network of sensor aggrega-
tors. Medusa offers an infrastructure to deal
with the economic issue between providers
and consumers, enabling users to recruit sen-
sor providers and to offer incentives for par-
ticipatory sensing.

Vita (Chan et al., 2013) is a platform for cy-
ber-physical systems that provides a graphical
user interface for the specification of crowd-
sensing queries. The Vita platform offers a
means for the efficient management of tasks
and resources for collecting and aggregating
sensor data, automatically dealing with task
failures. The selection of sensor data is based
on the computational resources available in
the devices.

The MobIoT middleware (Hachem et al.,
2014) allows the specification of crowdsensing
queries by means of a language based on SQL
and TinyDB. Its aim is to improve scalability
by selecting the minimum number of devices
to provide the necessary sensing resolution
within a particular coverage area. MobIoT

performs device selection based on the mobil-
ity patterns of devices that satisfy the required
monitoring coverage. MobIoT crowdsensing
applications are statically developed, meaning
that changes in crowdsensing queries require
application redevelopment.

In order to enable dynamic crowdsensing,
we argue that platforms should provide sup-
port for strong decoupling between consum-
ers and providers of sensing data, avoiding
static dependency between consumer and pro-
vider or sensing data types. Table 2 shows a
comparison of the above-described platforms
with CSVM.

In Vita, sensor data is accessed through a
RESTful interface, provided by previously de-
ployed applications. In Medusa, consumption
of sensor data depends on the previous re-
cruitment of devices and on a previous agree-
ment to provide data. In both models, users
must have previous knowledge of sensing
data types. Existing applications must be re-
developed, according to each platform’s appli-
cation model, in order to incorporate dynamic
changes in the crowdsensing environment.
Both platforms offer repositories for sensor
metadata, although the development model
remains static.

In MobIoT, crowdsensing queries are struc-
turally similar to SQL, thus requiring knowledge
of the crowdsensing data types prior to applica-
tion development. For this purpose, MobIoT
offers a knowledge repository where users can
browse ontologies of crowdsensing data.

Queries for sensor consumption in Vita are
dependent on previously defined publishing
applications. Thus, compared with CSVM,
Vita proposes a more rigid approach to the de-
velopment of applications, which is coherent
with the proposal of task management, to the
detriment of a more dynamic behavior. The
creation of new queries in Medusa requires
new recruitments (as in new applications) and
depends on the acceptance of the task by the
sensing device’s owner. As a consequence,
development of crowdsensing applications in
those platforms may be slower than in CSVM.

On the other hand, the Vita and Medusa
platforms provide lightweight services for
mobile devices, including services to deal with
resource consumption and privacy concerns.
CSVM deals with sensing data in an ad hoc
means, which may hinder the usage of com-
plex data. Vita, Medusa and MobIoT, in turn,
are more suitable for well-structured (as op-
posed to ad hoc) crowdsensing environments.

30 Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

Model-based Virtual Machines

With respect to the model interpretation
techniques used in CSVM, two model execu-
tion engines are noteworthy. CVM (Commu-
nication Virtual Machine) (Deng et al., 2008) is
a platform for model-driven specification and
execution of user-centric communication ser-
vices. MGridVM (MicroGrid Virtual Machine)
(Allison et al., 2011) is a model execution engine
based on the principles of CVM but targeting
the domain of smart power microgrids. CVM
performs the processing of models specified
in a DSML called Communication Modeling
Language (CML) (Clarke et al., 2006), while
MGridVM proposes a DSML for the domain of
microgrids called MGridML. In a similar way,
our work proposes a DSML for the domain of
mobile crowdsensing (CSML), together with
its model execution engine (CSVM).

In CVM, models@runtime are employed
to adapt an ongoing communication session
to satisfy new user requirements. Similarly,
in MGridVM, models@runtime enable spe-
cific properties to be defined by the user and

employed in a dynamic way to control and
manage the elements of a microgrid. CSVM
follows a similar approach, in which user-
defined models are employed to describe
and adapt crowdsensing functionality. From
an architecture point of view, while in CVM
all nodes execute an identical instance of the
platform, MGridVM has a centralized archi-
tecture, in which the execution engine runs in
the microgrid controller. CSVM takes a hybrid
approach, with a centralized service provider
(CSVMProvider) and a distributed, lighter,
configuration (CSVM4Dev) that runs on each
participating mobile device.

Concluding remarks

In this paper, we present an architecture for
mobile crowdsensing based on a DSML, called
CSML, and its accompanying virtual machine,
CSVM, which together allow the specification,
execution and management of models@runt-
ime that describe a crowdsensing environ-
ment and related functionalities. The CSML
language enables the modeling of the devices

Crowdsensing Platform
Aspect Medusa Vita MobIoT CSVM

Concerns/
goals

collaboration model;
dissemination and

economic efficiency

resource and task
efficiency

optimized sensor queries
(number and physical

area of involved devices)

spontaneous
and dynamic
applications

Approach user-centric application-centric middleware-centric user-centric

Crowdsensing
application

control-flow
between providers-

consumers

traditional
applications;

framework-based

traditional applications;
middleware-based

dynamic
runnable

model
Development
model

dynamic through
recruitment static static dynamic

Application
language MedScript Java-based

(Android) Java CSML

Interaction
model stages-connectors SOA/REST SOA/REST

passive devices VM-server-VM

Collaboration
model

consumers recruit
providers for tasks

application-
oriented middleware-oriented

consumers
incorporate
published

sensing data
Decoupling
consumer
from provider

partial yes yes yes

Architecture cloud-based framework and
cloud-based central/cloud service VM based

Distribution highly distributed cloud dependent requests (query execution) provider

Table 2. Comparison of CSVM with other platforms for crowdsensing.

31Journal of Applied Computing Research, vol. 5, n. 1, p. 17-31, Jan/Jun 2016

Melo, Rocha, Costa | Enabling Dynamic Crowdsensing through Models@Runtime

that participate in the environment (by allow-
ing access to their sensing capabilities), as well
as the modeling of crowdsensing queries by
the user. CSVM in turn is a model execution
engine that allows execution and dynamic
adaptation of crowdsensing functionality in
terms of models@runtime. CSVM has a lay-
ered architecture that decouples the different
stages of model processing, allowing the use
of high-level user-defined models to drive the
sensing capabilities of a heterogeneous and
dynamic set of mobile devices spread across
the crowdsensing environment. The function-
alities provided by the platform can be used
directly by end-users or as part of applications
that need distributed sensing information
from voluntary devices.

The main contribution of this work was
the demonstration of the feasibility of a mod-
els@runtime approach for the mobile crowd-
sensing domain. The platform uses models@
runtime to keep an up-to-date representation
of a crowdsensing environment and related
queries. It enables the use of a high-level
modeling language to create complex que-
ries involving a number of sensors of differ-
ent kinds embedded in the mobile devices
of users spread across a particular physical
environment. The platform also allows dy-
namic adaptation in the case of long-running
queries as a result of changes in both the
environment and user requirements. Future
work includes the enhancement of the secu-
rity of crowdsensing applications, especially
regarding authentication and privacy con-
cerns, as well as performance and scalability
improvements.

Acknowledgements

We thank FAPEG (Fundação de Amparo
à Pesquisa do Estado de Goiás) and CNPq
(Grant 473939/2012-6) for partly funding the
work presented in this paper.

References

ALLISON, M.; ALLEN, A.A.; YANG, Z.; CLARKE,
P.J. 2011. A software engineering approach to
user-driven control of the microgrid. In: Soft-
ware Engineering and Knowledge Engineering
(SEKE 2011), Miami Beach, 2011. Proceedings…
Knowledge Systems Institute, p. 59-64.

BLAIR, G.; BENCOMO, N.; FRANCE, R.B. 2009.
Models@run.time. Computer, 42(10):22-27.
http://dx.doi.org/10.1109/MC.2009.326

CHAN, H.; CHU, T.; LEUNG, V. 2013. Vita: A
crowdsensing-oriented mobile cyber physical
system. IEEE Transactions on Emerging Topics in
Computing, 1(1):148-165.

 http://dx.doi.org/10.1109/TETC.2013.2273359
CLARKE, P.J.; HRISTIDIS, V.; WANG, Y.; PRABA-

KAR, N.; DENG, Y. 2006. A declarative approach
for specifying user-centric communication.
In: International Symposium on Collaborative
Technologies and Systems (CTS 2006), Las Ve-
gas, 2006. Proceedings… IEEE Computer Society
Press, Los Alamitos, p. 89-98.

 http://dx.doi.org/10.1109/CTS.2006.6
DENG, Y.; SADJADI, M.S.; CLARKE, P. J., HRIS-

TIDIS, V.; RANGASWAMI, R.; WANG, Y. 2008.
CVM – A communication virtual machine. Jour-
nal of Systems and Software, 81(10):1640-1662.
http://dx.doi.org/10.1016/j.jss.2008.02.020

GANTI, R.K.; YE, F.; LEI, H. 2011. Mobile crowd-
sensing: Current state and future challenges.
Communications Magazine, 49(11):32-39.

 http://dx.doi.org/10.1109/MCOM.2011.6069707
HACHEM, S.; PATHAK, A.; ISSARNY, V. 2014. Ser-

vice-oriented middleware for large-scale mobile
participatory sensing. Pervasive and Mobile Com-
puting, 10:66-82.

 http://dx.doi.org/10.1016/j.pmcj.2013.10.010
MATHUR, S.; JIN, T.; KASTURIRANGAN, N.;

CHANDRASEKARAN, J.; XUE, W.; GRUTES-
ER, M.; TRAPPE, W. 2010. Parknet: Drive-by
sensing of road-side parking statistics. In: In-
ternational Conference on Mobile Systems, Ap-
plications, and Services (MobiSys ‘10), 8, New
York, 2010. Proceedings… ACM, p. 123-136.
http://dx.doi.org/10.1145/1814433.1814448

MELO, P.C.F. 2014. CSVM: Uma plataforma para
crowdsensing móvel dirigida por modelos em tempo
de execução. Goiânia, GO. Master’s thesis. Uni-
versidade Federal de Goiás, 147 p.

OMG. 2008. Meta Object Facility (MOF) 2.0 query/
view/transformation specification. Final Adopt-
ed Specification (November 2005).

RA, M.-R.; LIU, B.; LA PORTA, T.F.; GOVINDAN,
R. 2012. Medusa: A programming framework
for crowd-sensing applications. In: International
Conference on Mobile Systems, Applications, and
Services, 10, New York, 2012. Proceedings… ACM,
p. 337-350.

 http://dx.doi.org/10.1145/2307636.2307668
WANG, Y.; CLARKE, P.J.; WU, Y.; ALLEN, A.;

DENG, Y. 2008. Runtime models to support
user-centric communication. In: International
Workshop on Models@runtime, 3, Toulouse,
2008. Proceedings… Technical Report COMP-
005-2008, Computing Department, Lancaster
University, Lancaster, p. 77-86.

Submitted on September 14, 2015
Accepted on January 6, 2016

