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Abstract. The skill level of a person in processing information, reacting to his/her surroundings and decision 
making for performing an activity is determined by the allocation of the mental resources demanded by such 
activity. When the allocation is inappropriate, there is a higher possibility for some accident to occur. Thus, 
one can notice that the cognitive workload spent by the person is an important variable that can take him 
to a risky situation. Since it is not possible to measure the cognitive workload spent by a person during the 
performance of an activity directly, we noticed the need to evaluate the level of his/her performance in order 
to be possible to infer the cognitive workload used. So, we propose the creation of a model to classify the 
cognitive workload based on the behavioral model skill-rule-knowledge and the relations of performance 
properties with the context surrounding the person. The evaluation of the model was made using a public 
dataset and the results showed a promising approach for the classification of human performances.
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Introduction

The mental resources of a person must 
be allocated in a way to encompass the de-
mands of an activity for the performance to 
be adequate (i.e., lower chance of happen-
ing an accident). However, humans have a 
limited mental capacity (Boff et al., 1994). So, 
the demands of the activity can surpass the 
available limits for the person. When this 
happens, the person’s skill in processing 
information, reacting to his/her surround-
ings and making decisions are negatively 
affected, allowing for a greater chance of ac-
cidents to happen.

Physical injuries can bring different prob-
lems to people. In the case of recurrent falls in 
the elderly, as noted by Gasparotto et al. (2014), 
one of the problems is related to deficits in the 
length of the gait of the elder. This way, we 
can notice the need for a system that is able to 
detect possible risk situations in order to indi-
cate and help people in their decision making 
process, thus, avoiding injuries.

Considering current technology, it is possi-
ble to develop a system capable of doing such 
task. The capture of information about the en-
vironment through sensors is a characteristic 
of context-aware systems. This work follows 
the definition of context introduced by Abowd 
et al. (1999): Context is any information that can 
be used to characterize the situation of an entity. 
An entity is a person, place, or object that is consid-
ered relevant to the interaction between a user and 
an application, including the user and applications 
themselves.

From this notion, one can notice that con-
text-aware systems incorporate what is called 
omnipresence, where the computers become 
“invisible” to their users and perform their 
tasks in an autonomous way (with no interac-
tion) using information gathered from the en-
vironment, allowing for the creation of ubiq-
uitous systems (Weiser, 1991). For this work, 
we consider that it is necessary for the evalu-
ation to be performed in a non-intrusive man-
ner, i.e., the user should not indicate any kind 
of abnormal situation. In order to accomplish 
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that, it is pertinent for the system to be devel-
oped based on the idea of ubiquity.

This paper is structured as follows: Section 
2 gives a brief introduction to core concepts 
used in our work. Section 3 presents some re-
lated works. Section 4 describes the proposed 
model and Section 5 presents its evaluation. 
Section 6 draws our final considerations and 
future work.

Core concepts

Since a ubiquitous system needs to consider 
information related to the environment, in this 
work we consider the taxonomy of context pre-
sented by Mikalsen and Kofod-Petersen (2004) 
shown in Figure 1. The contexts that are con-
sidered in the evaluation of the risk level of an 
activity are: the environmental context (describes 
the surrounding where the activity is being per-
formed); the spatio-temporal context; the task con-
text; and the personal context (describes physi-
ological and mental information of a person). 
This work considers that risk situations occur 
according to the conditions of the environment 
where the person is in and the performance (re-
lated to the physiological and mental informa-
tion) of the activity by such person. The social 
context (roles that one can take in the society) 
can also influence the risk evaluation, however, 
it is not considered in this work.

Cognitive workload refers to the mental 
workload that a person uses during the per-
formance of an activity (Craven et al., 2007), 
i.e., the quantity of mental resources allocated 
for its execution. It is the resources allocation 
that determines the ability of the person to 
process information, react to its surroundings 
and make decisions. If this allocation is not ap-
propriate for the demands of the activity, such 
abilities are reduced in a way that the possibil-
ity for some accident to occur is raised.

This work is based on the approach given 
to the cognitive workload in the behavioral 
model skill-rule-knowledge (SRK) by Rasmus-
sen (1983), shown in Figure 2. This model clas-
sifies the human behavior in three levels, from 
the behavior that demands a lower cognitive 
workload to the one that demands higher cog-
nitive workload:

(1)  skill-based behavior (SBB) – occurs in a 
known context, with the environment 
information being sensed as signals; 

(2)  rule-based behavior (RBB) – occurs in 
familiar context, but with some differ-
ences, with the environment informa-
tion being sensed as signs; 

(3)  knowledge-based behavior (KBB) – oc-
curs in unfamiliar contexts, with the en-
vironment information being sensed as 
symbols. 

Therefore, the way in which the informa-
tion is sensed is what determines the level of 
cognitive workload used. Signals are related to 
spatio-temporal signals, implying that the per-
son is performing a usual physical action, signs 
are perceived when the information sensed is 
used to modify pre-determined actions (i.e., 
situations where the activity is performed by 
convention or previous knowledge) and sym-
bols are information used to predict or explain 
non-familiar situations.

This work associates the inference of cogni-
tive workload used in an activity based on the 
SRK model and the taxonomy of context, and 
is a part of the development of the middleware 
for the inference of risk in activity presented 
in a previous work (Del Fabro et al., 2013). In 
the middleware (Figure 3) the risk is inferred 
by the component Risk Analyzer from envi-
ronmental and user information received from 
the Activity Manager component and perfor-
mance information received from the SRK 
Classifier. This paper proposes a conceptual 

Figure 1. Taxonomy of context (Mikalsen and Kofod-Petersen, 2004).
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model for the latter based on the relationships 
of environmental and performance properties.

Even though there are neurophysiologi-
cal sensors that can capture information such 
as pupil dilation and heart rate (Craven et al., 
2007), this work considers that it is not possible 
to determine directly the cognitive workload 
used by a person and that there is “frequently 
a negative relationship between mental work-
load and performance” (Rantanen and Lev-
inthal, 2005). This way, the higher the cogni-
tive workload used in an activity, the worst 
its performance. This principle can be verified 
by realizing that experts in performing some 
activity tend to use efficient and reliable cog-
nitive shortcuts without losing depth of pro-
cessing (Loveday et al., 2013), i.e., experts use 
less cognitive workload while performing well 
their activities. The properties that could be 
used for the measure of a performance are:

•  Attention: the load of attention over a 
person can reflect directly the level of 
performance of some activity. It is no-
ticeable in tasks that involve sensorial 
and motor skills, in a way that novices 
tend to consciously control each step of 
the execution of some ability, whereas 
experts do not need aid of the attention 
to perform fast and efficient control pro-
cedures (Gray, 2004). Besides, attention 
can reflect directly the possibility that 
some kind of error occurs during the 
performance of a task. For example, 
when operators need to perform mul-
tiple tasks, like the handling and moni-

toring of controls, it is necessary that his 
attention is correctly allocated in an effi-
cient and effective manner, even under 
the pressure of time, e.g., control oper-
ators of amusement rides (Woodcock, 
2014). Related to attention, the anxiety is 

Figure 2. Behavioral model skill-rule-knowledge (SRK) (Rasmussen, 1983).

Figure 3. Context-aware middleware for risk 
inference in activities (Del Fabro et al., 2013).
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a factor proven as prejudicial to the per-
formance of a task, especially in complex 
tasks and that demand attention (Derak-
shan and Eysenck, 2009);

•  Effectiveness and efficiency: besides 
the effectiveness of the performance of a 
task, usually related to the accuracy of its 
result (Eysenck et al., 2007), the efficiency 
of the behavior must also be considered 
for the evaluation of a performance (Rob-
ert and Hockey, 1997). The efficiency of 
the performance of an activity lowers 
while the cognitive workload spent rises 
so that the task is effectively performed 
(Eysenck et al., 2007);

•  Mental workload: the performance of 
a task changes according to the men-
tal workload used for its execution (the 
higher the demands of the task, the high-
er the mental workload needed). How-
ever, people have a limited capability of 
mental workload that can be spent in a 
task. If this task exceed such capability, 
people tend to lower their criteria of per-
formance so that the mental workload 
also lowers. This mental workload can 
be related to several factors, such as pres-
sure of time, uncertainty of how to pro-
ceed, data quality for the task and con-
flicting demands (Cook and Salvendy, 
1999). An interesting point is when the 
cognitive workload is considered for the 
development of human-computer inter-
faces (HCI), where it is indicated that the 
designers use structures that explicit the 
cognitive levels with the more efficient 
processing (SBB and RBB), i.e., structures 
that require the lowest cognitive work-
load at the same time they preserve the 
applicability when the cognitive work-
load is higher (Vicente and Rasmussen, 
1992). However, the performance of an 
activity can be negatively affected even 
when the cognitive workload is small, as 
a result of boredom (Lin et al., 2014);

•  Time: the task load can be defined as the 
relation of available and spent time for 
its execution. So, as the task load gets 
higher, the performance of the person is 
reduced, i.e., people change from pro-ac-
tive mode to reactive as this task load 
gets higher – a pro-active mode results 
in a better performance and the reactive 
mode in a poor performance (Rantanen 
and Levinthal, 2005).

•  Others: besides the already mentioned 
factors, the evaluation of the perfor-
mance of an activity can be also related 
to the ability and experience of the exec-
utor (Vicente and Rasmussen, 1992); to 
the complexity, demand and quantity of 
tasks and sub-tasks being performed – 
more tasks mean less response time and, 
thus, worse the performance (Ujita et al., 
1995) and; slips, mistakes and errors that 
may happen during the performance 
of the activity (related to effectiveness/
accuracy). Moreover, depending on the 
occurred problem (slip, mistake or er-
ror), it is possible to determine directly 
the cognitive workload (SRK) used at the 
moment of the activity’s performance, 
e.g. as in the work of Woodcock (2014).

So, the measurement of the performance of 
an activity is important for the inference of the 
cognitive workload spent during its execution, 
since it is not possible to measure the cogni-
tive workload in a direct manner. Thus, we 
can observe in works that use the SRK model a 
tendency of using factors for the measurement 
of human performances, like the mentioned, 
for the classification of the cognitive workload 
(SBB, RBB or KBB) of their users/operators 
during the performance of the specific tasks of 
their systems (Lin et al., 2014; Woodcock, 2014; 
Skalle et al., 2014).

Related work

With the goal of understanding the behav-
ior of operators with different responsibilities 
in a main advanced control room, the work of 
Lin et al. (2014) classifies the tasks of each work-
er from the cognitive workload used based on 
the SRK model and analyzing properties such 
as time, frequency and mental workload.

In the case of controls of amusement rides, 
the analysis of the behavior of the ride operators 
was used in the work of Woodcock (2014) to de-
termine guidelines in the design of the control 
interface of the rides with an approach for error 
prevention. The errors were classified according 
to the cognitive workload spent in each task. The 
analysis of such cognitive workloads was made 
considering properties such as time pressure and 
focus of attention of the operator.

In the work of Skalle et al. (2014), the SRK 
model was also used for the classification of 
human failures, however, the properties used 
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are related to mistakes, classification errors and 
lack of experience.

Table 1 makes a comparison between these 
works. We can notice that in the cited works, 
but not limited to them – e.g. (Stahl et al., 2013), 
the relationships of certain tasks with the cog-
nitive workload levels based on the SRK model 
are determined manually, where the research-
ers observe how the subjects of the study be-
have and evaluate their performance, thus, not 
allowing these tasks to have a change in their 
cognitive workload level, even if the subjects 
get better or worse in their performance after 
some time (contrary to our work). Other per-
formance properties used by the works refer 
to time, frequency, lack of experience, etc. The 
proposed model in this paper accepts any kind 
of performance property capable of being in-
ferred by a context-aware system.

During the related work research we could 
not find any works that evaluate the perfor-

mance of human activities in real time by a 
context-aware system. So, we consider our 
work as a novel approach by using a cognitive 
workload framework to the area of computa-
tional contexts.

Proposed model

Figure 4 shows the model proposed for the 
inference of the performance of a human activ-
ity. Such model is based on the performance 
properties and the SRK model.

The Context and Activities and Activities and 
Cognitive Workload components are histori-
cal data for each activity that was performed. 
This data is composed by performance prop-
erties and context information gathered at the 
moment the activity was performed. Also, it 
stores the cognitive workload used by the per-
son (inferred by the Cognitive Workload Infer-
ence component). 

Work
Performance Properties

Use of the SRK model Real-timeAttention/
Anxiety

Error/
Efficiency

Mental
Workload

Lin et al. (2014) No No Yes Fixed classification of tasks No
Woodcock (2014) Yes No No Interface for error prevention No
Skalle et al. (2014) No Yes No Determine failure reason No

Proposed Work Yes Yes Yes Evaluation of the performance 
of human activities Yes

Table 1. Works comparison.

Figure 4. Proposed model for performance evaluation based on the SRK model 
and properties of context and performance.
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The Relationship Analysis component veri-
fies how usual the values for the current con-
text and the performance properties of the 
current activity are. The analysis is based on 
historical information about the context and 
activities. 

In order to verify the user’s performance 
related to a performance property, we meas-
ure its probability with all context properties. 
If we consider the SRK model, this probability 
can be related to how the sensorial informa-
tion about the environment is sensed, i.e., sig-
nals, signs or symbols. Since each performance 
property has its own probability, the environ-
ment is sensed differently when considering 
each property separately. For example, if the 
probability of the performance property dura-
tion is high in its relationship with the context 
property temperature, we can infer that, for the 
current activity, the property sensed the envi-
ronment (i.e., the temperature) as a signal. The 
equation that does this is the following:

sensoring(pp) = ∑n
j = 0  (pp , pcj) (1)

In the equation (1), pp is the performance 
property being analyzed; pc is the context 
property; n is the number of context proper-
ties; and  is the probabilitsy function. This 
way, we can notice that the sensoring is the 
sum of how each context was perceived by the 
performance property.

In the Properties Analysis, the performance 
properties have a sensoring associated. This 
sensoring is then used by this component to 
infer the cognitive workload based on the SRK 
model. Since not every performance property 
has the same importance for some activity 
(e.g., the performance property attention may 
not be relevant for the activity brushing teeth), 
it is necessary to measure their relevance. It 
is measured by using data provided by the 
component Activities and Cognitive Workload 
by measuring how much the performance 
property changed for some activity and what 
impact it had in the cognitive workload in-
ferred by the system. The following equation 
shows how it is done for the performance 
property pp:

relevance(pp) = cov(Ppp
,WActivity) (2)

In the equation (2), p pp
 represents the per-

formance property list of values; and WActivity 
is the list of values for the cognitive workload 
inferred for some activity. The covariance was 

used to measure the relationship between the 
performance property and cognitive workload. 

The Property Analysis component infers the 
cognitive workload based on the following 
equation:

∑
n

i=0
  (sensoring(pi) x relevance(pi)) (3)

The final result of this equation is the sum 
of the sensing for the performance proper-
ties multiplied by their relevance. Based on 
the SRK model, we can notice that this sum 
gives an idea of which level in the model 
the cognitive workload used is. The inferred 
cognitive workload is then used to feed the 
historical data.

Example scenario

Figure 5 shows how the model should work 
for a scenario related to the activity “shower-
ing”. From the history of Context and Activi-
ties, composed by context information (e.g. 
humidity level) and activity information such 
as its performance properties, the component 
of the model Relationship Analysis is responsi-
ble for the analysis of such history in order to 
detect possible relationships between the per-
formance and context properties. The relation-
ships represent the way a context influences 
some performance property. In Figure 5, it is 
shown by the relationship of the properties du-
ration and attention (the higher the duration of 
the activity showering, the higher the attention 
used), as well as the relationship of humidity 
and mental workload (the higher the humidity 
during the activity, the higher the mental work-
load required). 

This way, after a filtering of the most rel-
evant relationships is made according to the 
current activity and context, the model per-
forms an analysis of the informations of the 
current activity and context with such rela-
tionships. For instance, if the current attention 
of the user is high, as well as the duration of 
the activity, the analysis would point out for 
a perception of a signal for such performance 
property, because it follows the pattern for 
existing relationships. Instead, when a perfor-
mance property is not following a pattern, the 
sensory perception would tend to represent 
a high level of cognition (sign or symbol). The 
analysis of relationships performs the sensory 
inference of all performance properties for the 
current activity and context, which are ana-
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lyzed according to their relevance level in the 
component Properties Analysis.

The analysis of the properties verifies how 
all the inferred perceptions of the performance 
properties were and, considering each rele-
vance level, performs the inference of the cog-
nitive workload used. In Figure 5, we can no-
tice that the result of the inference was a SBB, 
because the most relevant performance prop-
erties had an inferred sensory perception with 
low levels (i.e., signal or sign). In other words, 
the patterns found in the history were gener-
ally followed.

Model evaluation

For the evaluation of our model we used as 
performance property the effectiveness of an ac-
tivity and as context property the temperature 
of the environment. In order to obtain the ef-
fectiveness of an activity we had to define an 
activity composed by sub-activities that are 
present in the dataset. The effectiveness of an 

activity is directly related to how many core 
sub-activities were performed during the time 
window of such activity. 

So, activities are composed by a set of sub-
activities. There are two kinds of sub-activities: 
(i) core sub-activities and (ii) secondary sub-
activities. The former represents sub-activities 
that are essential to achieve the object of the 
activity, thus necessary for its recognition. 
Secondary sub-activities are those related to a 
given activity but not essential to it, they are 
useful to give additional meaning to the activ-
ity (e.g., the sub-activity of closing the window 
while taking a bath).

In order to detect an activity, every core sub-
activity related to it must take place in a prede-
fined time window. The initial time window is 
determined by a preliminary phase during a cer-
tain time for system calibration. It depends on 
the frequency of each activity, so the time win-
dow can range according to the user’s behavior.

An activity is started when a core sub-ac-
tivity is detected during the time window. An 

Figure 5. Example of how the conceptual model of Figure 4 should work for the activity “showering”.

Figure 6. Last entries in the dataset used for evaluation.
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activity is finished with the detection of the last 
missing core sub-activity. The activity is consid-
ered not completed if not all of its core sub-ac-
tivities were detected during the time window. 
It means that only some part of the activity was 
performed. This approach allows the detection 
of concurrent and interleaved activities. 

T he evaluation was performed using a 
public dataset (Cook, 2010) and we considered 
the scenario depicted in Figure 6. It represents 
a timeline of detected sub-activities. Each rec-
tangle represents the user context in a specific 
period of time. The first number inside the 
rectangles is the value of the temperature in 
degree Celsius and the a is the detected user 
sub-activity.

Have Meal is the activity being recognized. 
Activities are detected based on their core 
sub-activities, which must rely inside a time 
window (for the activity Have Meal, the time 
window is set as 1 hour). The core sub-activ-
ities composing the activity Have Meal are: 
meal preparation, eating and relax. It is impor-
tant to notice that Have Meal was not defined 
in the dataset, we defined it by using related 
activities as its core sub-activities. This way, 
by looking at Figure 6, one can observe that 
Have Meal was successfully detected, because 
its core sub-activities were detected in the time 
periods 3, 4, 5 and 6 (giving an effectiveness of 
100%). When t4 was the last detected action, the 
activity Have Meal was also detected but with 
an effectiveness of only 66.6%, since only two 
of its core sub-activities were detected during 
the time window (a1 and a2), as seen in Table 2. 
The changes in temperature shown in Table 2 
are related to the fact that the user was moving 
between different environments in the house, 

e.g., from the kitchen to the living room, each 
with its own climate, or because of some other 
factor, such as turning on the oven or opening 
the refrigerator in the kitchen.

The value for the performance is meas-
ured using equation 3. Since we are consid-
ering only one performance property (ef-
fectiveness), its relevance level is said to be 
maximum (100%). For example, considering 
the entry at time 13:42:10 (in Table 2), we can 
notice that the performance is very close to 
1, i.e., the activity was really well performed 
(the probability for the value of the effective-
ness happening with the current value of the 
temperature was high).

Conclusion and future works

The main contribution of this paper is the 
proposal of a model for the classification of the 
cognitive workload spent by a person during 
the performance of an activity in a context-
aware system. We can notice the relevance of 
using performance properties for the infer-
ence of the cognitive workload, because they 
allow the system to adapt itself according to 
the changes in the behavior of the user. The 
fact that the model identify the relationships 
based on previous events and that the data-
base of events is fed as new activities are be-
ing performed and their cognitive workloads 
are inferred, we can notice that, giving enough 
time, new relationships can be found and oth-
ers can get weaker. Thus, it is visible the capa-
bility of the model to adapt to changes of user 
behavior, i.e., the model is capable of perceiv-
ing changes in the cognitive workload of the 
user during the performance of his activities, 

Time Location User Action Temperature (°C) Have Meal Performance
11:14:07 Living Room Relax 24.5 No -
11:55:02 Living Room Relax 24.5 No -
12:02:30 Living Room Relax 24.5 No -
12:22:51 Living Room Relax 24.5 No -
12:35:04 Living Room Relax 25 No -
13:25:13 Living Room Relax 25 No -
13:42:10 Kitchen Meal Preparation 27 Yes 0.98986957
13:54:23 Living Room Eating 25.5 Yes 0.01747659
14:26:23 Living Room Relax 26 Yes 0.01758262
14:38:13 Living Room Relax 26 - -

Table 2. Entries from the test dataset for the day 2011-06-11.
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allowing the inference of the final cognitive 
workload to vary between the three levels of 
the SRK model.

In future works we intend to implement the 
proposed model linking the equations shown 
in Section 4 with some algorithm for data min-
ing, such as pattern recognition (combining the 
performance level obtained with some known 
pattern could yield a more precise result).
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