
Journal of Applied Computing Research, 3(2):118-128
July-December 2013
© 2013 by Unisinos - doi: 10.4013/jacr.2013.32.05

Introduction

The information contained in the genome
can be of great value to many studies. The
genome is hereditary information encoded in
deoxyribonucleic acid (DNA) that is passed
to the descendants of an organism being
formed of monomers called nucleotides. Each
of these nucleotides has a molecule termed
base, which can be Adenine, Cytosine, Gua-
nine and Thymine.

In order to know the DNA of an organ-
ism it is necessary to extract this data using
a genetic sequencer (Shendure et al., 2005)
and then string them together. The genetic
sequencing of the target organism extracts a
large amount of small fragments of DNA, re-
petitive and disordered (Chaisson et al., 2004;
Pandey et al., 2008; Sundquist et al., 2007) that
must be assembled to obtain a consensus se-
quence of the bases which represent DNA
(Mardis, 2008; Metzker, 2009). The assem-
bly process requires a lot of computational
power, and a set of specific and efficient al-
gorithms to perform the sequence (Chaisson
et al., 2009; Pevzner et al., 2001).

The pipeline denovo2, illustrated in Figure 1
(Applied Biosystems, 2010; Life Technologies,
2012) is a set of programs widely used for as-
sembling this large volume of data obtained

Task scheduling in genetic sequencing tool

Jéfer Benedett Dörr, Guilherme Galante, Luis Carlos E. De Bona
Universidade Federal do Paraná. Rua Cel. Francisco H. dos Santos, 100, 81531-980, Curitiba, Paraná, Brazil
jefer@ufpr.br, ggalante@inf.ufpr.br, bona@inf.ufpr.br

Abstract. This paper proposes a task scheduler to control the demand of sending gaps encountered during
the process of genome sequencing processing considering computational resources available. Gaps are
spaces without representation in the genome sequencing process. This activity generates many competing
tasks that consume a lot of computational resources, mainly memory. The goal of the scheduler is to prevent
more required computational resources besides those which can be alive supplied, because in this case, a
performance degradation of the system will occur and it may cause a delay in the processing time of the
tasks. The motivation for this work is to improve the efficiency of the implementation of the closure of gaps
in genome sequencing. For the evaluation of the proposal, a scheduler for gaps with scheduling policies
based on monitoring of computing resources has been implemented.

Keywords: bioinformatics, scheduling tasks, genetic sequencing.

from these data sequencers and to generate
one consensus DNA sequence. The assembly
is performed by Velvet (Zerbino, 2008; Zerbino
and Birney, 2008), an assembler which uses de
Bruijn graphs, an approach capable of han-
dling a large amount of data with good cover-
age (Compeau et al., 2011). After assembly is
held, the closing of gaps occurs with the inten-
tion of finding bases for the representation of
empty positions. In this case, an instance of
Velvet assembler is used for each gap, result-
ing in a large amount of tasks.

These multiple Velvet instances run simul-
taneously and in some cases may require more
memory resources than the computing envi-
ronment can provide. The assembly tasks are
fairly heterogeneous, varying from a few to
hundreds of Gigabytes (GB). In order to keep
all the tasks running, all the available memory
is consumed and, as a consequence, the sys-
tem enters a state of performance degradation,
causing delays in the tasks processing. This
situation can be avoided by checking the avail-
able computational resources before starting
new instances of the assembler. With this ob-
jective, a scheduler task has been proposed.

In the scheduler investigated, instead of
processing all tasks at the same time and with
no criteria as it was originally made, the tasks
are triggered by observing the resource avail-

119Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

ability needed for processing them. Thus,
different tasks can be executed consuming
resources in parallel, in a controlled manner,
causing no performance degradation and re-
sulting in execution time reduction. By observ-
ing the availability of resources before submit-
ting a task for execution, this implementation
can keep the task within the limits of available
computational resources and avoids perfor-
mance degradation.

The proposed approach proved to be very
efficient. In a first version of the scheduler, it
was possible to reduce running time in 55%
when compared to original implementation.
With an enhanced version the time was re-
duced by 73% compared to the original time.

The rest of the paper is organized as fol-
lows: In the section “Related works”, related
works are presented. The section “Pipeline de-
novo2: problems found” presents the details
of the problem encountered during the execu-
tion of the pipeline denovo2 genetic sequenc-
ing. The section “Tasks scheduler for deno-
vo2” presents the proposed scheduler. In the
section “Forecast of memory usage” the fore-
cast memory usage is presented. In the section
“Experimental results” the results of the ex-
periments are presented. Finally, the section
“Conclusion and future work“ presents the
conclusions and suggests future work.

Related works

A task scheduler is considered a component
that runs resource management. It is extremely

important for parallel and distributed systems,
and can be considered one of the most challeng-
ing problems in this area. Scheduling is to de-
termine in what order the tasks are executed.
This work proposes task scheduling and pag-
ing preventing trashing on a parallel supercom-
puter using expected memory usage of each
task, having the following related works.

The problem of resource sharing for many
simultaneous tasks in a parallel system (Olivier
et al., 2012), which may result in problems mak-
ing paging not possible to guarantee quality of
service for the execution of all tasks is present-
ed in Batat and Dror (2000). Pagination affects
the synchronization between tasks. An alterna-
tive is to impose access controls and only ad-
mit new tasks that fit into available memory.
Despite suffering from delayed execution,
this leads to a better overall performance by
preventing the harmful effects of paging and
trashing. In Setia et al. (1999) the impact of
memory usage is evaluated for task scheduling
considering the long-term problems to avoid
paging and trashing super parallel comput-
ers using the characteristics of memory usage
of each task. In the work of Arras et al. (2013)
the processing subject to strong resource con-
straints, particularly in terms of memory was
approached with extensions to list-scheduling
algorithms for taking into account memory
requirements. The suggested approach was a
parallel scheduling with a new model featur-
ing memory tasks and priority adjustment of
the tasks, achieved gain and preventing dead-
locks with priority adjustment.

Figure 1. The pipeline denovo2.

120 Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

Finally, in Nikolopoulos and Polychrono-
poulos (2003) the prevention of paging and
trashing is exploited for the efficient sched-
uling of parallel tasks. The challenge is to do
as Ghodsi et al. (2011) consider the problem of
fair resource in a system where each task has
different demands.

Pipeline denovo2: problems found

The pipeline denovo2 is a set of programs
implemented in different languages that are
used together in order to receive fragments
from genetic sequencers of new generation,
capable of generating a large data volume and
arrange them in order to assemble a c onsensus
contiguous genome sequence, which is the re-
sult of multiple sequence bases alignment, and
each base occurs more often in a given posi-
tion (Meidanis and Setubal, 1997).

 Depending on the data set being processed,
the execution pipeline denovo2 can consume
all available memory, causing slowdowns in
the computer system as a whole and making
the task prolonged indefinitely.

To identify the source of the problem, it
was necessary to monitor the work performed
by each pipeline stage denovo2. F or this, an
Altix UV 100 machine was used. It offers, in its
current configuration, a total of 256 GB of ran-
dom access memory (RAM) and 64 processing
cores. Experiments were executed with the
dataset named training1 set research provided
by the Department of Biochemistry, Federal
University of Paraná. No more information

about the data set due to confidentiality of the
survey was available.

The training1 set has a size of 111.6 million
base pairs, contains 4,756 gaps that occupy 8
GB of disk space, and results in an output of
300 GB of data. Using this data set, the execu-
tion of the tasks occurred normally until the
assembly phase, however, during the closing
gaps phase, we were unable to verify the con-
sumption of the entire memory available im-
pacting application performance.

At this stage, demonstrated in Figure 2, an
instance of Velvet (Zerbino, 2009) is executed
for each gap found to try to assemble the parts
that were left without representation bases.
This procedure is repeated four times with
different parameters for each gap. Because all
instances are executed concurrently, it is pos-
sible to estimate approximately 280.000 tasks
running concurrently for training1 dataset.

This large amount of concurrent tasks re-
quires memory allocation to keep the gaps in
execution. At this stage, the 512 GB of RAM are
not enough and 8 GB of swap are also used. By
using the virtual memory swap, the speed of
access to data drops dramatically (Tanenbaum,
2008). Excessive consumption of RAM by lots
of running tasks generate a flow to write and
read a lot of data from the hard disk while
running, caused by the paging mechanism
that makes tasks exchanged between disk and
swap. This situation makes the remaining pro-
cesses wait for a long time in queue to use the
central unit processing (CPU). This problem
is known as thrashing, which usually causes

Figure 2. The pipeline denovo2.

121Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

serious performance problems making the
system unusable (Denning, 2008).

Trashing is a phenomenon that occurs
when excessive paging is performed by re-
ducing CPU utilization and throughput. As
an aggravating factor trashing the operat-
ing system detects that the CPU is idle (dur-
ing closing gaps CPU usage is below 1%) and
admits more processes increasing the level
of multiprogramming, and consequently the
rate of pages failure, worsening performance
(Denning, 1968; Denning, 2008). The graph in
Figure 3 adapted from Denning (2008) demon-
strates how trashing affects performance; the
horizontal axis shows the increase in the level
of multiprogramming, while the vertical axis
shows the efficiency of the implementation.
While an increase of performance is expected
by increasing the level of multiprogramming,
the yield falls suddenly after a critical load
(Denning, 2008).

This is exactly the behavior during the exe-
cution of the tests. The use of parallelism aims
to improve performance, but when there is an
excessive use of parallelism there may come
a critical moment when the performance im-
provement expected from the way to a perfor-
mance decreases. This performance decrease
is caused by the lack of resources which causes
the phenomenon called trashing, as reported
by Denning (1968) and reassessed by Denning
(2008) as shown in Figure 3.

With the experiments, we determined
that the problem is the large amount of jobs
being executed in parallel. One way to solve
this problem is to organize the instantiation of
these tasks taking into consideration the avail-
ability of computational resources.

Tasks scheduler for denovo2

Scheduling is the action of determining in
what order tasks are to be executed. A sched-
uler is a tool that allows the tasks control in
accordance with the policies and the restric-
tions presented (Casavant and Kuhl, 1988;
El-Rewini et al., 1994). The basic problem of
the scheduler is to satisfy goals, how to get
fast response time, maximize system output
(flow), maximize processor utilization, avoid
indefinite hold, combine tasks of high and low
priority and minimize execution time, (Kunz,
1991; Setia et al., 1999; Tanenbaum, 2008; Wu
and Sun, 2004) according to the criteria de-
fined for scheduling.

The scheduling of tasks involves three
main components: consumers, politics and
resources. Tasks waiting to be executed are
consumers. Resources are available compu-
tational resources, such as memory, disk and
CPU. Finally, the scheduling policy is the set
of rules used to determine when and which
task should be executed.

Figure 3. The expected performance being affected by trashing.

122 Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

The policy defined by the scheduler di-
rectly impacts performance of the application
that is controlled. The proposed scheduler
uses system information such as scheduling
policies. When the system receives a new gap
to be processed, the scheduler already knows
the expected maximum usage of RAM for that
gap. Then the free memory of the machine at
the time is asked to verify the possibility to run
the gap not transcending the limits of available
memory, as shown in Section “Experimental
results”. After performing this query if the
condition is satisfied, the scheduler can submit
a new gap to run. Then the scheduler receives
another gap and performs the same verifica-
tion process before submitting tasks, as dem-
onstrated by the algorithm of Figure 4. Even in
case of suffering some delay in the submission
of tasks, execution is guaranteed, all within the
machine’s capacity limits and thus allowing a
more effective implementation resulting in
performance gain.

The proposed policy for the scheduler is
the use of the prediction of memory usage,
considering the free memory given by an in-
ternal control. The scheduler triggers a task
when the available memory is greater than the
amount of memory that was required to per-
form the task.

Forecast of memory usage

It is possible that different data sets occu-
py the same space than other sets. Then, two
fields with the same space occupied on disk
can have a big difference in execution time and
memory consumed.

To predict the memory usage for the im-
plementation gaps, 4 sample gaps for 5 dif-
ferent classes of intervals sizes were selected.
The samples were classified according to the
size occupied on disk and classes: mini (up to
3 Megabytes (MB)), small (3.1 to 17 MB), me-
dium (17.1 to 37 MB), large (37.1 to 77 MB)
and extra (above 77.1 MB). For each class the
average usage of RAM was calculated and the
standard deviation was added, so that these
data were used to design expectation maxi-
mum memory usage, as shown in Table 1.
With these values, a database of estimated
values using each class gap was created du-
ring processing. These values are used in the
decision of the scheduler policy to evaluate
whether to submit new gaps, or wait for the
required amount of free memory.

The free memory in the system is stored
in a variable, from this moment it is this vari-
able that will answer the expectation of free
memory on the machine. As the peak memory

Figure 4. Implementation of an algorithm for scheduling gaps.

mini small medium large extra

Size on disk (MB) 3 13 37 77 112
Average memory usage (GB) 0,6 3,5 10 32 80
Standard deviation 0,4 0,5 3 3 5
Forecast of memory RAM usage (GB) 1 4 13 35 85

Table 1. Expected usage of RAM by classes gaps.

123Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

usage of tasks is close to its end, the scheduler
must consider the long term, so for this rea-
son when launching a new task is queried, the
free memory is expected in this variable and
not directly from the system. The expected
maximum memory usage for the gap that will
be run is subtracted at the end of this variable
and this value is returned. Thus it is a paral-
lel control of the amount of available memory
and that can be allocated without overloading
the system.

Experimental results

To evaluate the results, a comparative
analysis of the behaviour of computational re-
sources was made during the original schedul-
er execution with the original implementation
of the proposed scheduler, which implements
the policies scaling the points raised in this
work that could result in performance im-
provement. The tools used in the monitoring
of resources were GNU/Linux operating sys-
tem SUSE Enterprise Server 11 SP1 x64 tools.
The results were obtained by observing the
logs generated during the execution of each of
the two alternatives for closing the gaps.

 As a consequence of resource monitoring
and management tasks using training1 set, the
graph in Figure 5 shows the difference of the
times obtained in implementing the two ap-
proaches using the same set of gaps. On the
horizontal axis the time in hours is shown and
on the vertical axis the original scheduler and
the proposed scheduler are represented. The
original scheduler is represented in blue and
the proposed scheduler is represented in red.

The graph in Figure 6 shows, in red, the
memory usage while running the original
scheduler; and, in blue, while implement-
ing the alternative proposed scheduler with

training1 set. The vertical axis shows, in GB,
the amount of RAM used in runs while hori-
zontal axis represents the time in hours. The
green line indicates the limit in GB of available
memory, and the amount that should never be
extrapolated.

As it can be seen in the graph of Figure 6,
the original scheduler, in red, required the en-
tire available RAM and consumed the entire
swap while maintaining maximum use prac-
tically throughout all the execution. The use
of multiprogramming with consumption of
the entire memory, represented by the green
line, and swapping all trashing caused the
phenomenon of extending the time required
to complete the process and obtain the result.
On the other hand, the proposed scheduler in
blue never extrapolates the available memory
and maintains a safety margin to leave memo-
ry available to the system, represented by the
green line. When using RAM comes close to
the memory limit set to the minimum neces-
sary to keep the system up and running, the
proposed scheduler waits for free memory to
instantiate new gaps. For this reason, curves
can be observed in Figure 6 with the saw-tooth
like behaviour. When enough memory is re-
leased, another gap is launched for execution.
The memory will be released and the sched-
uler will dynamically perform the query until
the free amount is sufficient for all processing
of the next gap, according to the prediction for
memory usage of the scheduling policy.

The graph in Figure 7 shows the CPU usage
during the execution of the original scheduler
and the proposed scheduler to compare the two
approaches with training1 set. In red, the CPU
usage is represented during the execution of
the original scheduler, which is due to the prob-
lem of waiting for input and output operations
which is due to the problem of waiting for input

Figure 5. Comparison of execution times.

124 Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

and output operations caused by trashing the re-
duced CPU utilization and remains low, below
1%. In blue, it is possible to observe a better us-
age of the CPU time by the proposed scheduler,
achieved through better management of avail-
able resources and showing that avoiding bottle-
necks could improve the use of CPU. By moni-
toring the resources in order not to overload the
system and launching new tasks only when the
required resource is available for execution, it
was possible to avoid the problem of trashing.
Not suffering from degradation caused by trash-
ing can better be nefit the processing power and
with it the runtime decreases.

Disk usage was monitored by the result of
iostat command of GNU/Linux operating sys-
tem, which reports statistics of input and out-
put of the system. In the extended mode, by us-

ing the -x parameter display you can view the
result of the %util, which indicates the percent-
age of utilization, the flow, and disk access.

This field indicates how busy your disk ca-
pacity is to serve new requests. The %util field
shows 100% in disk access when disk access is
saturated and the device becomes a bottleneck,
reducing system performance. Values above
100% indicate that the disk system is over-
loaded, resulting in degradation of disk access
performance. Reading and writing operations
are a bottleneck and slow the progress of the
execution of the closure of gaps. With control
of memory, a result from using the scheduler,
this index remained low and contributed to
the reduction in runtime.

Figure 8 compares the results of the iostat
command demonstrating the peak percentage

Figure 6. Implementation of an algorithm for scheduling gaps.

Figure 7. Statement of CPU usage during the execution of
alternatives for closing gaps.

125Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

of disk utilization during the execution of
the original scheduler and of the proposed
scheduler with training1 set. As it can be seen
in the graph of Figure 8, the value of the origi-
nal variable %util scheduler, in red, reached
peak values of 5000%. In the case of the pro-
posed scheduler, in blue, this value remained
below 10% throughout the run time, not caus-
ing any delay.

As shown in Figures 6 and 8 memory re-
sources and disk access were required in addi-
tion to their availability, which caused perfor-
mance bottleneck and would not allow use of
processing, as shown in Figure 7, and conse-
quently caused delay in the execution of tasks.
Managing the use of these resources enabled
to improve performance by avoiding the bot-
tleneck problem and trashing, being able to re-
duce the execution time as shown in Figure 5.

All work undertaken so far in this article
used the sequential version of the assembler
(each task uses only one CPU core). This deci-
sion was taken because the parallel execution
generated a high amount of tasks and prob-
lems that did not allow a complete execution
of the task. Analyzing the sequential version
the results proved the possibility of improving
results, then, tests using the parallel version
were resumed. In this first approach paral-
lelism was totally eliminated because it was
being used incorrectly without getting any
performance gain. The problem was to try to
parallelize several small tasks, as well as to
deplete the resources available for the high
amount of tasks to be processed. The time for
the management of parallelism was greater
than the time it would gain the goal. There-
fore, the first approach eliminated the parallel
executions. But as parallelism is advantageous
for cases where the processing takes longer,

we decided to test a conditional parallelism,
which for the larger task parallelism was used
and the smaller tasks were performed sequen-
tially. This is approach v2.

Parallelism is an effective technique for per-
formance gain on large tasks. The size of the
task was the reason for the parallel version to
take longer than the sequential version, since
most of the tasks to be performed were classi-
fied as mini or small group. With parallelism
an overhead of managing threads occurs, run-
ning in case of small tasks. The usage of paral-
lelism ends up generating more overhead than
gain time. The larger task parallelism is advan-
tageous. Therefore, its use for the global event
for all tasks was not advantageous due to the
high number of small tasks. But differentiating
the use for large jobs using the parallel version
of the assembler and a small sequential ver-
sion seems a good pick and will be the next
approach in trying to improve the runtime.

To evaluate this second version of the pro-
posed scheduler, a second set of data has been
used. The sampling set is the first set contai-
ning representatives of all sizes of tasks but in
smaller quantities. In this second set there are
300 gaps and the results of processing times
can be seen in Figure 9, where the horizontal
axis indicates the time in hours and the verti-
cal axis shows 3 versions used in the test: the
original version in blue, the version that was
the first proposed scheduler in red, and in yel-
low the proposal to improve the scheduler,
called scheduler v2. In the proposed scheduler
v2, differentiation of sequential and parallel
use of the assembler used for closing gaps was
performed.

With this set of data, the observed reduc-
tion of the original round to round using the
proposed scheduler followed the same behav-

Figure 8. Statement waiting for disk access.

126 Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

ior as the first round of training set, reducing
by approximately 55% the time necessary to
complete execution. The proposed differen-
tiation using size as a criterion task to decide
the use of a parallel or a sequential version of
the assembler scheduler, termed as proposed
scheduler version 2, achieved a 73% reduction
in the time required for a full implementation.

Conclusion and future work

By using the scheduler it was possible to
keep track of tasks that used resources ef-
ficiently and to be able to run multiple tasks
in parallel. With this approach, the execution
time in the experiments was reduced by 55%
in relation to the time obtained from the origi-
nal scheduler and reduced implementation in
73% compared to the original time using the
scheduler with differentiate use of sequential
or parallel implementation assembler, accord-
ing to the size of the task to be processed.

This work discussed only part of the pipe-
line denovo2 where the attempted closing of
the gaps found is done, but it is possible to
seek improvements and more efficient imple-
mentations also in other stages of this widely
used tool in the quest for knowledge of DNA.
Although this work is punctual at one of
many phases that comprise the genetic se-
quencing pipeline denovo2 we identified and
provided an efficient solution to a problem
that prevents its execution thus impeding the
work of genetic sequencing performed at the
Department of Biochemistry and Molecular
Biology of the Federal University of Parana

and others that use the same tool for genetic
sequencing.

As future work, it is possible to improve
this scheduler updating field forecast to keep
memory usage in parallel execution as much
as possible with the task. The scheduler can be
improved by using the best-fit scale to choose
the best task and not wait for the resource to
the next queue. As the processing of each task
is independent, it can be proposed as a distrib-
uted processing. As there is still a large flow of
reading and writing to disk all the time during
a processing, execution in memory could be
more efficient. It eliminates the bottleneck of
reading and writing.

Acknowledgements

I would like to thank the Department of
Biochemistry and Molecular Biology of the
Federal University of Paraná, which provi-
ded the data set used, monitored and ana-
lyzed the results of this work, especially
Professor Leonardo Magalhães Cruz and his
PhD student Vinicius Weiss. I would also
like to thank the department of Computer
Science of the Federal University of Paraná
for the staff, the algorithmic and computa-
tional support to the Altix UV 100 supplied
by Professors Marcos Alex andre Castilho
and Fabiano Silva.

References

APPLIED BIOSYSTEMS. 2010. SOLiD de novo acces-
sory tools 2.0 1. Available at: http://gsaf.cssb.ute-

Figure 9. Comparing the three proposals.

127Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

xas.edu/wiki/images/7/71/DeNovo_Assembly_
Pipeline_2.0.pdf. Accessed on: February 02, 2012.

ARRAS, P.; FUIN, D.; JEANNOT, E.; STOUCHI-
NIN, A.; THIBAULT, S. 2013. List Scheduling in
Embedded Systems under Memory Constraints.
In: International Symposium on Computer Ar-
chitecture and High Performance Computing,
25th, Porto de Galinhas, 2003. Proceedings…
IEEE, p. 152-159.

 http://dx.doi.org/10.1109/SBAC-PAD.2013.22
BATAT, A.; DROR, F. 2000. Gang scheduling with

memory considerations. In: International Paral-
lel and Distributed Processing Symposium, 14th,
Cancun, 2000. Proceedings… Cancun, p. 109-114.

CASAVANT, T.L.; KUHL, J.G. 1988. A taxonomy of
scheduling in general-purpose distributed com-
puting systems. IEEE Transactions Software Engi-
neering 14(2):141–154.

 http://dx.doi.org/10.1109/32.4634
CHAISSON, M.J.; BRINZA, D.; PEVZNER, P. 2009.

De novo fragment assembly with short mate-
-paired reads: Does the read length matter? Ge-
nome research, 19(2):336-46.

 http://dx.doi.org/10.1101/gr.079053.108
CHAISSON, M.; PEVZNER, P.; TANG, H. 2004.

Fragment assembly with short reads. Bioinfor-
matics, 20(13):2067–74.

 http://dx.doi.org/10.1093/bioinformatics/bth205
COMPEAU, P.; PEVZNER, P.; TESLER, G. 2011.

How to apply de Bruijn graphs to genome as-
sembly. Nature biotechnology, 29(11):987–991.
http://dx.doi.org/10.1038/nbt.2023

DENNING, P.J. 1968. Thrashing: its causes and pre-
vention. In: Fall joint computer conference, Fall,
part I, New York, 1968. Proceedings… ACM, p.
915-922.

DENNING, P.J. 2008. Thrashing. In: Wiley Ency-
clopedia of Computer Science and Engineering.
[s.l.], Hoboken John Wiley & Sons cop.

 http://dx.doi.org/10.1002/9780470050118.ecse967
EL-REWINI, H.; LEWIS, T.G.; ALI, H. 1994. Task

scheduling in parallel and distributed systems. En-
glewood Cliffs, Prentice-Hall, 290 p.

 http://dx.doi.org/10.1109/2.476197
GHODSI, A.; ZAHARIA, M.; HINDMAN; B.

KONWINSKI, A.; SHENKER, S.; STOICA, I.
2011. Dominant resource fairness: fair allocation
of multiple resource types. In: USENIX confe-
rence on Networked systems design and im-
plementation, 8th, Berkeley, 2011. Proceedings...
Berkeley, p. 24.

KUNZ, T. 1991. The influence of different worklo-
ad descriptions on a heuristic load balancing
scheme. IEEE Transactions Software Engineering,
17(7):725–730.

 http://dx.doi.org/10.1109/32.83908
LIFE TECHNOLOGIES. 2012. Project denovo. Avai-

lable at: http://solidsoftwaretools.com/gf/pro-
ject/denovo. Accessed on: July 18, 2012.

MARDIS, E. 2008. The impact of next-generation
sequencing technology on genetics. Trends in
genetics: TIG, 24(3):133–41.

 http://dx.doi.org/10.1016/j.tig.2007.12.007
MEIDANIS, J.; SETUBAL, J.C. 1997. Introduction to

Computational Molecular Biology. Boston, PWS
Publishing Company, 296 p.

METZKER, M.L. 2009. Sequencing technologies,
the next generation. Nature Reviews Genetics,
11(1):31–46. http://dx.doi.org/10.1038/nrg2626

NIKOLOPOULOS, D.S.; POLYCHRONOPOULOS,
C.D. 2003. Adaptive scheduling under memory
constraints on non-dedicated computational
farms. Future Generation Computer Systems,
19(4):505-519.

 http://dx.doi.org/10.1016/S0167-739X(03)00031-1
OLIVIER, S.L.; PORTERFIELD, A.K.; WHEELER,

K.B.; SPIEGEL, M.; PRINS, J.F. 2012. OpenMP
task scheduling strategies for multicore NUMA
systems. International Journal of High Performance
Computing Applications, 26(2):110-124.

 http://dx.doi.org/10.1177/1094342011434065
PANDEY, V.; NUTTER, R.C.; PREDIGER, E. 2008.

Next-generation genome sequencing: Towards per-
sonalized medicine. Weinheim, Wiley-VCH verlag
GmbH Co, 260 p.

PEVZNER, P.; TANG, H.; WATERMAN, M.S. 2001.
An Eulerian path approach to DNA fragment
assembly. National Academy of Sciences of the
United States of America, 98(17):9748–9753.

 http://dx.doi.org/10.1073/pnas.171285098
SETIA, S.; SQUILLANTE, M.; NAIK, V. 1999.

The impact of job memory requirements on
gang-scheduling performance. SIGMETRICS
Performance Evaluation Review, 26(4):30–39.
http://dx.doi.org/10.1145/309746.309751

SHENDURE, J.; PORRECA, G.J.; REPPAS, N.B.;
LIN X.; MCCUTCHEON, J.P.; ROSEMBAUM,
A.M.; WANG, M.D.; ZANG, K.; MITRA, R.D.;
CHURCH, G.M.; 2005. Accurate multiplex po-
lony sequencing of an evolved bacterial geno-
me. Science, 309(5741):1728–32.

SUNDQUIST, A.; RONAGHI, M.; TANG, H.; PE-
VZNER, P.; BATZOGLOU, S. 2007. Whole-
-Genome Sequencing and Assembly with High-
-Throughput, Short-Read Technologies. PloS
one, 2(5):484.

 http://dx.doi.org/10.1371/journal.pone.0000484
TANENBAUM, A.S. 2008. Modern Operating Syste-

ms. Upper Saddle River, Prentice-Hall, 1072 p.
WU, M.; SUN, X. 2004. Memory conscious task

partition and scheduling in grid environments.
In: IEEE/ACM International Workshop on Grid
Computing, 5th, Washington, 2004. Proceedin-
gs… Washington, p. 138-145.

 http://dx.doi.org/10.1109/GRID.2004.43
ZERBINO, D.R. 2008. Velvet Manual - version 1.1.

Available at: http://helix.nih.gov/Applications/vel-
vet_manual.pdf. Accessed on: December 19, 2012.

128 Journal of Applied Computing Research, vol. 3, n. 2, p. 118-128, Jul/Dec 2013

Dörr, Galante and De Bona | Task scheduling in genetic sequencing tool

ZERBINO, D.R. 2009. Genome assembly and com-
parison using de Bruijn graphs. Hinxton, UK.
Ph.D. Thesis. University of Cambridge, 149 p.
Available at: http://www.ebi.ac.uk/sites/ebi.
ac.uk/files/shared/documents/phdtheses/da-
niel_zerbino.pdf. Accessed on: December 16,
2012.

ZERBINO, D.R.; BIRNEY, E. 2008. Velvet: algori-
thms for de novo short read assembly using de
Bruijn graphs. Genome research, 18(5):821–829.
http://dx.doi.org/10.1101/gr.074492.107

Submitted on: January 06, 2014
Accepted on: August 08, 2014

