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Introduction

Vehicular ad-hoc Networks (Hartenstein 
and Laberteaux, 2008) have attracted the at-
tention of the research community due to its 
potential for improving urban mobility. Many 
works in the literature address several issues 
related to monitoring roads conditions (Eriks-
son et al., 2008), vehicles performance (John-
son and Trivedi, 2011), driver’s behaviour 
(Araujo et al., 2012), traffic lights state (Kouk-
oumidis et al., 2011; Le et al., 2011; Cai et al., 
2010), traffic monitoring (Waze, 2008; Rybick 
et al., 2007), collaborative driving (Smaldone 
et al., 2008), accident detection (Zaldivar et al., 

2011) and event detection (Thompson et al., 
2010) offering a large spectrum of traffic infor-
mation solutions.

Vehicles can communicate directly to each 
other, but the deployment of a minimum 
communication infrastructure along the ur-
ban area increases up to 5 times the message 
delivery ratio and reduces up to 35% the ex-
pected delivery time (Wu et al., 2012). Such 
relevant gains are explained by the intrinsic 
nature of the vehicular networks, composed 
of dynamic nodes moving at high speeds, 
constantly changing the network topology. 
When considering rural areas and roadways, 
the gains are even stronger since the nodes are 
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very disperse, making the vehicle-to-vehicle 
communication inefficient. In additional, the 
roadside infrastructure can be used to connect 
the vehicles to external systems in the Inter-
net allowing the dissemination of information 
to/from drivers. The design of dissemination 
points presents several important issues, and 
this work focuses on a specific one:

Where do dissemination points have to be 
placed in a Manhattan-style topology to ensure 
the maximum coverage?

This work formulates the Probabilistic 
Maximum Coverage Problem (PMCP) and ap-
plies this technique to compute where the dis-
semination points must be deployed. PMCP 
considers the flow of vehicles into the urban 
area to select the intersections that maximize 
the coverage ratio of vehicles. In this formu-
lation, each intersection represents a set, each 
vehicle represents an element, and each ele-
ment has a probability p of belonging to a set. 
The goal is to find the sets that maximize the 
expected cardinality of the union of the select-
ed sets, i.e., amount of covered vehicles.

We investigate the benefits of incorporat-
ing a probabilistic model by comparing PMCP 
with MCP. A greedy heuristic to address the 
location of the dissemination points using the 
Maximum Coverage Problem (MCP) is pre-
sented in Trullols et al. (2009) and discussed 
in the third section (Greedy MCP). The sim-
ulations show that PMCP is able to achieve 
the coverage of almost 100% of the vehicles 
in a simulated urban area in Manhattan-style 
topology by deploying dissemination points 
in less than 7% of intersections, while MCP 
requires the deployment of dissemination 
points in 8.6% of the intersections to achieve 
similar coverage. 

The main contributions of this work are: 
(i) The formal definition of the Probabil-

istic Maximum Coverage Problem; 
(ii) The proposal of a probabilistic ap-

proach to model the density of vehicles along 
the urban area;

(iii) The application of PMCP to solve one 
instance of the problem of facilities allocation.

The remainder of this work is organized 
as follows. The next section presents related 
works. The following section details the greedy 
heuristic for the MCP (Maximum Coverage 
Problem). The fourth section presents PMCP. 
Then, the fifth section discusses how the pro-
jection of the flow of vehicles is computed. The 

sixth section presents experiments and results. 
The last section concludes the document.

Related work

There are several proposals to model and 
solve, in specific scenarios, the problem of 
locating dissemination points to support the 
operation of vehicular networks. Some efforts 
follow a two-step approach based on the cel-
lular telephony model. The first step splits 
up the region in geometric cells to reduce the 
complexity of the problem. The second one an-
alyzes each cell individually in order to define 
the exact location of each dissemination point 
(DP) inside the cells. The work (Habib and Sa-
far, 2007) adopts this strategy. After splitting 
the region, they apply an evolutionary ap-
proach to define the location of each dissemi-
nation point. The drawback of this approach is 
that the results are very dependent of the divi-
sion made in the first step. PMCP differs from 
this method since it does not perform any split 
of the region under study.

Other efforts apply clustering techniques to 
solve the location of the dissemination points. 
Basically, they group the vehicles using some 
snapshot of the traffic. As an example of this 
strategy, Kchiche and Kamoun (2009) propose 
a greedy algorithm based on the centrality of 
group to select the best locations for dissemi-
nation points. The algorithm aims to maximize 
the performance of the message distribution 
system by reducing the global delay and the 
communication overhead of the messages. 
PMCP differs from this kind of approach since 
it uses a mobility model.

There are also some efforts that apply ge-
netic programming to solve the problem of 
allocating dissemination points in a vehicular 
network. In a general sense, this kind of tech-
nique starts with an initial set of possible solu-
tions that are combined through generations 
until some stop condition is reached. Caval-
cante et al. (2012) apply this technique. The 
authors model the problem as a Maximum 
Coverage Problem and impose a limit of time. 
PMCP differs from this approach since it con-
siders a probabilistic model to estimate the ve-
hicles positions.

Finally, Trullols et al. (2009) present a 
greedy strategy to select the locations of the 
dissemination points. Throughout this text 
we will use the term Greedy MCP to refer to 
this heuristic. Greedy MCP is detailed in the 
next section.
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Greedy MCP

Trullols et al. (2009) present a greedy heu-
ristic for the Maximum Coverage Problem to 
locate the dissemination points. The authors 
assume three important conditions: (i) dis-
semination points are placed at intersections; 
(ii) each dissemination point has a range able 
to cover all the vehicles located at the intersec-
tion; (iii) the heuristic knows how many vehi-
cles are at each intersection. Greedy MCP re-
ceives the inputs:

M: Matrix of intersections of size r × r, 
where r represents the quantity of roads 
in the region under study. Each Mi,j holds 
the amount of vehicles in the intersection 
of roads i and j.
α: Maximum quantity of dissemination 
points that can be deployed.

Algorithm 1 shows an adapted version of 
the Greedy MCP. The original Greedy MCP 
heuristic requires full knowledge of the posi-
tion of each vehicle along the urban area. In 
this work we have relaxed this assumption as 
it seems unpractical to be achieved in a real 
scenario, besides raising some important pri-
vacy issues. So, we rewrote Trullols heuristic 
to make a fair comparison with PMCP. 

Lines 1-3 initialize the variables. The set 
Sol starts empty. The variable Quant holds the 
quantity of dissemination points deployed 
(starting as zero). The variable Cover holds 
the achieved coverage (also starting as zero). 
In line 4 the heuristic finds the coverage Ci,j at 
each intersection, i.e., the amount of vehicles 
still not covered. 

From lines 5 to 11 the heuristic loops se-
lecting, at each step, the set (intersection) that 
offers the maximum coverage (line 6). The se-
lected intersection is added to the set Sol (line 
7). The variable Cover is increased with the 

coverage of vehicles achieved in Ci,j (line 8). 
The Quant of dissemination points is incre-
mented (line 9) and the selected intersection is 
removed from the data (line 10). The heuristic 
loops until it reaches the limit of α dissemina-
tion points deployed or it has covered all vehi-
cles (line 5). Greedy MCP is used as a baseline 
for PMCP.

Vehicular networks have the mobility of 
nodes as its intrinsic characteristic. At each in-
stant of time, active nodes roam from one in-
tersection to another, switching from covered 
areas to uncovered ones, making the coverage 
problem even more challenging since we must 
take into account the direction and speed of 
each node. MCP-Greedy does not take into ac-
count this peculiarity, focusing its attention on 
the definition of a mechanism for the dissemi-
nation of information using only one shot, 
maximizing the amount of nodes reached by 
a single message. By dealing only with the 
instantaneous concentration of nodes at each 
intersection, MCP-Greedy has the potential to 
provide lower quality results than PMCP, be-
cause MCP-Greedy does not take into account 
the movement of vehicles. 

Major cities count with roads that serve as 
access corridors as they concentrate a signifi-
cant percentage of traffic. Because MCP-Greedy 
is not aware of the direction of the vehicles, this 
heuristic can (for example) suggest the deploy-
ment of dissemination points very close to each 
other, resulting in wasted or redundant equip-
ment, since the same vehicle will receive the 
same information twice whereas others will be 
left without any information.

PMCP

A snapshot of the traffic is not adequate 
to fully represent all the aspects of a mobility 
model. This section presents PMCP, a proba-
bilistic version of the Maximum Coverage 
Problem. The probabilistic model is useful to 
reduce biases in the data, at the same time it 
represents an efficient alternative to incor-
porate the urban mobility model within any 
vehicular trace. The core of the probabilistic 
model is the stochastic matrix Mr1, r2, where r1 
and r2 are two roads that intersect. The value 
Mr1, r2 indicates the probability that a vehicle 
travelling on road r1 stays on this road when 
r1 intersects r2. Each of its entries is a nonnega-
tive real number representing a probability.

The probability matrix is one of the in-
puts of PMCP and we assume that it can be 

Algorithm 1.
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obtained from applications like Waze (2008) 
or even that it can be measured by the transit 
authority using road sensors, observation, or 
estimated based on road characteristics like 
length, location, frequency of congestions, 
maintenance cost per mile, etc.

The Probabilistic Maximum Coverage 
Problem can be stated as:

Definition 1 (Probabilistic Maximum Cov-
erage Problem)

Suppose a set V={v1,v2,...vn} of n elements, a 
collection C={c1,c2,...,ck} of k subsets of V and a 
matrix P of size n×k where each Pxy gives the prob-
ability that element vx in cy for all x in {1,2,..,n} 
and for all y in {1,2,..,k}. Select l subsets from C 
such that their union has the maximum expected 
cardinality.

The probability matrix allows PMCP to en-
code a static mobility model enabling the pro-
jection of the vehicles flow over time. PMCP 
assumes that:

(i) Each traffic information (message) can 
be sent multiple times, as long as the informa-
tion is still helpful to the vehicles. Any vehicle 
that reaches a covered intersection in a time 
such that the information is still useful will 
benefit from the message and the dissemina-
tion system will have done the job.

(ii) Vehicles are in constant motion, roam-
ing from covered to uncovered intersections. If 
a vehicle has a probability p of driving-through 
a covered intersection, than the vehicle can be 
considered to be covered with probability p.

(iii) The system does not know the future 
positions of the vehicles, but it knows the col-
lective behavior. For every intersection, the 
system knows the percentage of vehicles that 
continue on the road (or turn into any other).

PMCP receives as input:

M: Matrix of intersections of size r × r, 
where r represents the quantity of roads 
in the region under study. Each Mi,j holds 
the amount of vehicles in the intersection 
of roads i and j.
α:  Maximum quantity of dissemination 
points that can be deployed.
P: Probability matrix of size r × r where 
each Pi,j holds the percentage of vehicles 
that continue on road i at the intersection 
(i,j).
PMCP is shown in  Algorithm 2. From lines 

1 to 3 the heuristic initializes variables. The 

set Sol starts empty and variables Quant and 
Cover start as zero. Line 4 projects the flow to 
find the coverage Ci,j at each intersection (i,j). 
This step is the core of our approach and it 
is detailed in next subsection. From lines 5 
to 12, the heuristic loops selecting (at each 
iteration) the set (intersection) that offers 
the maximum projected coverage (line 6). 
The selected intersection is added to the set 
Sol (line 7). The variable Cover is increased 
with the coverage of vehicles achieved in the 
selected intersection Ci,j (line 8). The Quant 
of dissemination points is incremented (line 
9) and the selected intersection is removed 
from the data (line 10). PMCP loops until it 
reaches the limit of α dissemination points 
deployed or it has covered all vehicles (stop 
condition in line 5). 

It is easy to notice that PMCP differs from 
the Greedy MCP just in the strategy used to 
compute the coverage. However, computing 
the coverage is just what leads to the success 
of the strategy since that parameter defines 
where the next dissemination point is going to 
be deployed.

Next subsection explains how PMCP uses 
the probabilistic model to compute the vol-
ume of vehicles at each intersection.

Projecting the flow

The projection is computed analysing the 
number of vehicles at each intersection, and 
the probability of each vehicle to stay on its ac-
tual road, or leave it. 

Equation 1 computes the coverage of ve-
hicles moving left-to-right on road i towards 
Mi,j. The function UncoveredVehicles() returns 
the quantity of vehicles still not covered in a 
given intersection, and the product computes 
the compound probability resulting from the 
series of intersections.

Algorithm 2.
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LRi,j = Σ (UncoveredVehicles(Mi,k) · Π Pi,l)
j – 1 j – 1

k = 0 l = k
(1)

Equation 2 computes the coverage of vehi-
cles moving right-to-left on road i. 

RLi,j = Σ (UncoveredVehicles(Mi,k) · Π Pi,l)
∀k > j k

l = j + 1
(2)

Equation 3 computes the coverage of vehi-
cles moving bottom-up on road j. 

BUi,j = Σ (UncoveredVehicles(Mk,j) · Π Pj,k)
i – 1 i – 1

l = k
(3)

k = 0

Equation 4 computes the coverage of vehi-
cles moving top-down in Figure 1 on road j. 
The quantity of vehicles arriving from inter-
sections Mi+1,j, Mi+2,j, ... , that reaches Mi,j is:

TDi,j = Σ (UncoveredVehicles(Mk,j) · Π Pj,k)
∀k > i k

l – i + 1
(4)

Therefore, the total projected flow (PFi,j) can 
be computed by adding LRi,j, RLi,j, BUi,j and TDi,j 
to the quantity of uncovered vehicles found in 
intersection Mi,j, as stated in Equation 5.

PFi,j = UncoveredVehicles(Mi,j) +
LRi,j + RLi,j + BUi,j + TDi,j

(5)

Next section shows the experiments and 
results of this research.

Experiments and results

We developed a set of tools, including a 
generator of graphs and a traffic simulator. 
The generator of graphs defines random sets of 
roads in Manhattan-style. Each road has a ca-
pacity and a direction (one-way or two-ways). 
The generator creates junctions among these 
roads and exports the scenario to the traffic 
simulator. The traffic simulator executes r2 cy-
cles of traffic lights, where r is the amount of 
roads. In every cycle, the simulator adds new 
vehicles at the beginning of each road using the 
Distribution of Poisson with λ=RoadCapacity. 
When vehicles reach the borders of the region, 
they leave the simulation. After all cycles per-
formed, we apply PMCP and Greedy MCP.

This experiment considers one hundred 
random scenarios in a Manhattan-style to-
pology. We change the capacity (λ) of each 
road using different seeds in order to gener-
ate various configurations of roads. We graph 
the mean and standard deviation obtained 
for the coverage. The asymptotic confidence 
interval of 95% was computed to the cover-
age, presenting values close to zero. Figure 2 
shows the mean coverage obtained for PMCP 
and Greedy MCP. 

The y-axis represents the mean percent-
age of the vehicles covered. The x-axis shows 
the amount of dissemination points deployed 
along the region. Note that the amount of dis-
semination points is shown as a ratio between 
the total number of intersections and the 
amount of intersections receiving dissemina-
tion points.

PMCP outperforms the Greedy MCP. 
Greedy MCP uses static volume of vehicles to 

Figure 1. Projecting the flow.



39Journal of Applied Computing Research, vol. 3, n. 1, p. 34-41, Jan/Jun 2013

Silva et al. | Probabilistic deployment of dissemination points in urban areas to support vehicular communication

locate the dissemination point, while PMCP 
uses the dynamic volume. Greedy MCP selects 
always the intersection able to cover the great-
est number of vehicles not yet covered. On the 
other hand, PMCP chooses the intersection 
that receives the highest expected flow of vehi-
cles considering the movement of each vehicle.

The standard deviation of the coverage is 
shown in Figure 3, with a variation less than 
2.2% points, indicating some sort of stability 
for different scenarios for both heuristics. So, 
PMCP is able to improve the coverage ratio, 
while preserving the same deviation than 
Greedy MCP. The results show that PMCP 
slightly changes the position of some dissemi-
nation points (moving a dissemination point a 
few intersections away), and this new configu-
ration of dissemination points results in bet-

ter coverage. PMCP performs better because 
it takes into account the vehicles mobility. 
Further study is required to understand the 
performance of PMCP across heterogeneous 
urban topologies.

Conclusion

In this paper we address the problem of 
locating dissemination points in a Manhattan-
style topology. We propose a probabilistic 
heuristic that selects the intersections that of-
fer the maximum projected flow. Computing 
the projection of the flow requires as input (i) 
the number of times that each intersection has 
been crossed and (ii) the turning matrix. 

The number of times that each intersection 
has been crossed tells us about its popularity. 

Figure 2. Coverage × percentage of intersections with dissemination points.

Figure 3. Standard Deviation (of coverage).
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On the other hand, the turning matrix gives us 
a summarized view of urban displacements. 
Recall that the turning matrix returns the driv-
er’s preference when facing the junction of two 
(or more) roads. 

Our vision is that bringing together the 
popularity matrix and the turning matrix 
would result in better allocation of dissemi-
nation points. Vehicular networks have the 
mobility of nodes as an intrinsic characteristic. 
At each instant of time, active nodes roam 
from one intersection to another, switching 
from covered areas to uncovered ones, making 
the coverage problem even more challenging.

MCP-Greedy does not take into account 
this peculiarity, focusing its attention on the 
definition of a mechanism for the dissemi-
nation of information using only one shot, 
maximizing the amount of nodes reached by 
a single message. By dealing only with the in-
stantaneous concentration of nodes at each in-
tersection (in a moment of time), MCP-Greedy 
may provide results below to a heuristic that 
takes into account the movement of vehicles.
The probabilistic model improves the strat-
egy to select intersections, ensuring higher 
coverage with less dissemination points. In 
our simulated scenarios (always in Manhat-
tan topology) we were able to achieve almost 
100% of coverage through the deployment of 
dissemination points in less than 7% of the in-
tersections using PMCP, while MCP-Greedy 
requires 8.6% of the intersections to achieve 
similar coverage.

Although PMCP shows better results, more 
research is required to fully comprehend the 
pros and cons of this technique. Our team is 
particularly interested in understanding: (i) 
How PCMP affects the coverage pattern of the 
region; (ii) Whether the vehicles drive-through 
less/more PMCP-dissemination-points during 
a typical trip; (iii) Whether  PMCP improve-
ments also occur over non-grid topologies.
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