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Abs tract. Increasingly popular, Internet applications for multimedia broadcasting require multipoint 
communication, in order to reduce network traffic rates. However, the widespread adoption of traditional 
multicast protocols is still held back by the current Internet structure, where the responsibility for 
management of multicast groups is distributed among network devices. By using distributed algorithms, 
such protocols generate delays in processing control groups events. In this paper we propose a clean-slate 
approach for multimedia multicasting, where the end to end calculation of the best route is performed 
to decrease delays in group configuration. The prototype developed implements this approach using 
OpenFlow technology. Results obtained through experimentation show a performance gain in relation to 
traditional IP multicasting.
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Introduction

Increasingly popular, Internet applications 
for multimedia broadcasting require commu-
nication among many hosts. In applications 
like Internet Protocol TV (IPTV) the content 
provider transmits data often identical to nu-
merous subscribers of the service. These ap-
plications traditionally rely on IP multicast to 
perform multipoint communications, avoid-
ing the waste of bandwidth when sending re-
peated data over multiple unicast connections.

Considering the decentralized nature of 
the Internet, where each router executes part 
of the routing algorithm, multicast routing 
protocols like Distance Vector Multicast Rout-
ing Protocol (DVMRP) and Multicast Open 
Shortest Path First (MOSPF) are not efficient to 
perform changes in the multicast tree. In such 
protocols routers are expected to exchange 
information with each other and then update 
their routing tables, process which may take 
some time to reach a consistent state. Further-
more, the Internet Group Management Proto-
col (IGMP), responsible for controlling entry 
and exit operations in groups of hosts, needs 
to communicate with many routers in order to 

notify events related to the multicast groups 
(Paul and Raghavan, 2002)

Therefore, in this paper we propose a clean-
slate approach to multicast communication 
on which the calculations of routes between 
source and destination are made beforehand, 
with the purpose of speeding up the process-
ing of multicast events. A prototype has been 
implemented, employing the concept of Soft-
ware Defined Networks (SDN) with Open-
Flow (Mckeown et al., 2008) technology and 
experiments have been carried out in network 
topologies emulated in Mininet environment 
(Lantz et al., 2010).

The remainder of this paper is organized 
as follows. In the first section, “Software De-
fined Networks” the concepts comprising the 
proposal of SDN and the OpenFlow technol-
ogy are exposed. Then, in the section “Relat-
ed Work” other proposals found in literature 
related with traffic management employing 
multicast protocols are presented. In the sec-
tion “Multiflow” we present the prototype 
developed, describing its architecture. After 
that, in the section “Prototype Evaluation” the 
methodology for evaluating the prototype, 
named Multiflow, is depicted. In the section 
“Results” we present the results obtained from 
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the evaluation. Finally, conclusions and future 
remarks are discussed in the last section, “Fi-
nal remark and further work”.

Software Defined Networks

With the increasingly number of devices 
connected to networks, more applications 
are being developed to improve the commu-
nication between those devices. This growth 
brings not only the need for more processing 
power, but also a bigger complexity in the de-
velopment of applications that help to provide 
a higher network performance.

The SDN concept proposes separating the 
data plan from the control plan, completely 
breaking all paradigms in current networks, 
fully removing the complex routines that man-
age data traffic from the network devices. The 
SDN architecture has, usually, a centralized 
operational system, which controls the actions 
that have to be taken by the interconnection 
devices.

Figure 1 illustrates the SDN concept (Yap 
et al., 2010). It is possible to observe that the 
network is controlled by a centralized network 
operational system (c) by the OpenFlow soft-
ware (a), which proposes a new approach for 
network mechanisms well established, such as 
protocols for traffic control and data delivery 
(b). In the context of SDN, a popular technol-
ogy to provide a centralized data plan control 
is the OpenFlow protocol, described in the fol-
lowing subsection. 

OpenFlow

OpenFlow is a protocol where the technol-
ogy enables the coexistence of new protocols 
(experimental) and production traffic in the 
same network. This characteristic allows the 
abstraction and virtualization of networks, 
allowing the control of the network traffic 
through data flows (Kanaumi et al., 2010).

The OpenFlow protocol is based on pro-
grammable switches that combine flexibility 
to develop new network applications and ease 
adapt of legacy switches to this new protocol. 

OpenFlow switches are capable to realize for-
warding of network packets through rules de-
fined in their flow tables. Furthermore, there 
is a centralized element (controller) connected 
to all OpenFlow switches. The controller exe-
cutes applications to manage the addition and 
removal of data flows in all switches through 
a control protocol (Mckeown et al., 2008). 
Thereby, the OpenFlow controller acts like an 
operational system for network management 
and control, offering a platform based in the 
reutilization of components and different lay-
ers of network abstraction (API - Application 
Programming Interface).

The OpenFlow protocol defines the com-
munication standard between all switches 
and the controller. The main function of the 
controller is perform the addition, removal 
and updating of entries in the flow table (Mck-
eown et al., 2008). Utilizing this infrastructure, 
in the moment that a switch receives a packet, 
it must consult each of its flow tables if there is 
an entry defined for that packet in that flow. If 
yes, the actions are realized. Otherwise, when 
no entry is found in any flow table, it is sent to 
the controller, which will define an action to 
be executed for the packet in a specific flow. 
This process generally ends by adding a new 
entry in the flow table of the switch that re-
ceived the packet (Open Network Foundation, 
2012). This flexibility gives the controller the 
capability to configure flows (and flow rules) 
with a great level of detail.

With the programming flexibility offered 
by the controller in OpenFlow networks, mul-
ticast routing protocols can be completely re-
considered without the use of distributed al-
gorithms. This paper explores this possibility 
and proposes an innovative multicast routing 
protocol.

Related work

In the context of an evolutionary approach 
for the Internet the work of Keshav and Paul 
(1999) proposed a centralized multicasting. 
They utilized a hierarchical structure of do-
mains associated with gateways, switches 
and root controllers, adopting the concept of 
detaching the data and control flows. This is 
similar of what is proposed in this paper, but 
without the flexibility of SDN. In the same 
context, Ratnasamy et al. (2006) proposed us-
ing the existing unicast routes to distribute 
multicast packets, building an overlayed net-
work. However, this solution doesn’t receive Figure 1. SDN operation concept.
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support from the network infrastructure, act-
ing solely in the application level.

Recently, other approaches were utilized, 
along with the clean-slate line, as well as the 
proposal in this paper. The idea behind all 
clean-slate approaches is to reformulate the 
traditional manner which certain applica-
tions operate, often breaking paradigms re-
lated to widely used solutions. Martinez et al. 
(2007) used the Multiprotocol Label Switch-
ing (MPLS) over Virtual Private Network 
(VPN) to manage multicast traffic. However, 
this combination has high complexity be-
cause of the way the network is organized, 
creating scalability problems for this solu-
tion. Finally, Yap et al. (2010) have suggested 
high level primitives (API) based in Open-
Flow to provide a more friendly develop-
ment of multicasting networks. These primi-
tives have a simplified implementation of the 
OpenFlow multipoint protocol, but does not 
consider questions such as changes in multi-
cast groups.

None of the previous researches consider 
the approach adopted in Multiflow, a scalable, 
clean-slate multicast protocol with group man-
agement, knowledge of the all routes between 
network devices and preoccupation with the 
processing time of events.

Multiflow

Multiflow is a multicast, clean-slate ap-
proach to programmable networks, in which 
hosts can join and leave multicast groups dy-
namically, where the efficiency in the process-
ing time of group events is fundamental. In the 
following subsections the Multiflow architec-
ture is described, as well as the mechanisms 
to define routes and process group events.

Prototype description

Multiflow is the application that executes 
in the OpenFlow controller. The NOX control-
ler (Gude et al., 2008) was chosen to create the 
prototype due to its scalability. NOX is imple-
mented in C and Python programming lan-
guages and is composed by modules that de-
scribe new functionalities. These modules are 
mostly developed in Python. NOX offers an 
initial set of modules, as for example APIs for 
handling UDP and IP packets. Also, the Mini-
net API (Lantz et al., 2010) was used in order to 
build the virtual network topology where all 
tests were conducted.

Operation

Once the network topology is defined, the 
Multiflow application remains alert to any 
occurrence of IGMP packets in the network. 
Based in the IGMP protocol, Multiflow iden-
tifies packets whose destination is a multicast 
group. The flow sheet in Figure 2 illustrates 
the operations performed by Multiflow, show-
ing the operations made when a host announc-
es itself as a data provider for a specific multi-
cast group, when a client enters in a multicast 
group and when a client leaves a group.

To start the transmission to a determined 
multicast group, the data server sends a packet 
of the type IGMP Query. Once this packet is 
identified, Multiflow recognizes the multicast 
group addressed in the packet as active in the 
network and store it in a list of active groups. 

Clients interested in joining multicast 
groups must send an IGMP Join packet ad-
dressed to the desired group. When an IGMP 
Join packet is identified, the Multiflow appli-
cation recognize the interest of the client in 
joining a multicast group and then initializes 
the best route discovery algorithm between 
the server(s) and the client(s). This calculation 
is possible only because Multiflow has knowl-
edge of all possible routes in the network. The 
calculation of the best route employ the Di-
jkstra algorithm (Djkstra, 1959), widely used 
with this purpose. The Dijkstra algorithm is 
based in the concept of weight of edges be-
tween node connections. In this paper, the 
weight of each edge of a graph is defined as the 
distance between two nodes connected in the 
network. The best route is considered the list 
of edges that minimizes the sum of weights. 

Figure 2. Multiflow operation flow diagram.
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Once the best route is found, the controller in-
sert in each node of each edge the necessary 
flow rules to correctly forward the packets be-
tween server(s) and client(s).

Another event present in the operation of 
the Multiflow, is when a client leaves a mul-
ticast group. This event occurs when a client, 
losing interest in a group, send an IGMP Leave 
packet. When this packet is received, the Mul-
tiflow application searches for the route that 
was previously added between the client and 
the server and removes the respective rules 
of each switch (node) of the route, this way 
cancelling the forwarding of packets from the 
given group to this client.

Prototype evaluation

This section presents details of the method-
ology used to evaluate the Multiflow imple-
mentation. The focus of this methodology is 
to identify the impact of the controller in the 
routing performance and in the formation of 
multicast groups. The following of this section 
presents the experimental setup and the net-
work topology utilized.

Experimentation setup

To realize the experiments, a virtual net-
work with switches that are compatible with 
the OpenFlow was utilized (Lantz et al., 2010). 
From this, the definition of active hosts and to 
which group a host is a client is determined by 
an ordered execution of a set of bash scripts 
developed using the open-source software 
Mausezahn (MZ version 0.40) (Haas, 2012). 
By using those scripts, each host in the virtual 
network has the capability to generate IGMP 
query, join and leave packets.

To test the behaviour of multicast applica-
tions, an application in the client/server model 
was developed in the C programming language. 
This client application receives UDP packets 
from a machine running the server application. 

In this scenario, the server application is the 
source of a multicast group. The server sends 
packets to a specific multicast group. In all oth-
er hosts, one instance of the client is executed. 
The client application is capable of providing 
statistical information about the performance 
of the solution, calculating the time span from 
when an IGMP Join is sent to a group from the 
first data packet received from this group. In 
other words, the client application calculates 
the time spend by the controller to calculate the 
best route from a client to the server, configure 
all necessary nodes and forward the first data 
packet from the server to that client.

Setup scenario

For the evaluation, a tree topology network 
was used, with seven switches and nine hosts, 
of which two are responsible to generate con-
tent for the multicast group and the rest of 
them represent clients interested or not in a 
given group. Figure 3 illustrates the generated 
topology in a tree format.

Within this scenario two important param-
eters are evaluated: the impact of the Multiflow 
controller in routing control performance and 
the impact of the performance in the formation 
of multicast groups. Multiflow was compared 
with another controller, OpenMcast, with of-
fers network behaviour resembling to what is 
observed in normal networks, that does not 
make use of the SDN technology. The Open-
Mcast controller is detailed as follows.

OpenMcast

The OpenMcast controller was developed 
to simulate in a SDN environment the mul-
ticast operations realized in a standard net-
work, based on the operation of the traditional 
IGMP protocol, in which is realized the propa-
gation of control packets in the network. Once 
the server host sends an IGMP Query, the con-
troller identifies the packet and propagates it 
through all ports in the switch (except the port 
that has received the packet). This flood op-
eration is done by all switches in the network, 
with the purpose that all hosts take knowledge 
about the existence of the server of the multi-
cast group at which the server in bound and 
the port from which each switch has access 
to the server. This operation is realized for all 
servers in the network.

Once all active multicast groups are known 
in the network, client hosts start their respective Figure 3. Evaluation topology.
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join operations, sending IGMP Join packets. 
All IGMP Join packets are forwarded across 
the network through the port that gives access 
to the multicast server addressed in the packet 
until it reaches the switch directly connected 
to the server. Through this propagation, the 
path between the server and each client of a 
multicast group is configured. After this proc-
ess, the delivery of UDP packets destined to 
a group is forwarded directly, without inter-
vention from the controller, from the server to 
each client host that joined the group.

For the leave operation, the IGMP packet 
must be propagated the same manner as the 
IGMP Join. In this propagation, the path previ-
ously defined is removed from the flow rules 
of all in that path, interrupting the distribution 
of packets to the client.

Using the OpenMcast controller, the con-
trol packets exchanged in the network can 
generate considerable high traffic. Moreover, 
packet loss can occur during the propagation, 
invalidating an operation, which must be re-
executed.

The sequence of operations realized for 
evaluating was planned based in a real situa-
tion, where clients that were participating in a 
group leave it or clients join one or more mul-
ticast groups. In the next section the results 
achieved in the scenario detailed are shown.

Results

This section presents the results obtained 
after a series of repetitions of the experiments. 
All results reflect the scenario described in the 
section “Prototype Evaluation”.

In total one thousand measurements of the 
time elapsed between the join operation of a 
client and the receiving of the first UDP data 
packet addressed to the group. The time taken 
to configure each switch shows variability. 
The average time observed between the join 
operation and the arrival of the first UDP data 
packet in the OpenMcast was approximately 
715 milliseconds, with a standard deviation of 
357 milliseconds. The Multiflow approach, the 
same set of operations resulted in an average 
time of 427 milliseconds with a standard de-
viation of 431 milliseconds.

Figure 4 depicts those results in a more de-
tailed view. In the vertical axis is possible to 
compare the average time of fifty consecutive 
executions of the interval time from the join 
operation and the receiving of the first UDP 
packet. The horizontal axis is shown the se-

quence number of the test executed. So, in the 
200 execution, the y axis showed the average 
time elapse from the 151º to the 200º execution. 
This grouping of data makes the chart cleaner 
and easier to analyse. It’s worth noting that 
the Multiflow controller, which has a priori 
knowledge of the network topology, performs 
better (lowest time) than OpenMcast that 
propagates control packets through switches.

Another interesting result can be observed 
in Table 1, which presents how the propaga-
tion IGMP Query packets escalate over the 
tree network topology presented in the sec-
tion “Prototype Evaluation”. In the Open-
Mcast controller, the relation between que-
ries generate in servers and propagated in the 
network follows the equation k * 2n – k, where 
k represents the number of queries generated 
in a server and n the number of levels in the 
tree topology. In other words, the greater the 
number of levels in the topology, the greater 
the number of control packets propagated 
through the network. In the Multiflow con-
troller, however, the number of queries gen-
erated and propagated is always the same, 
since in this controller does not propagate 
control packets in the network.

Figure 4. Average time from the client join and the 
receipt of the first packet.

Table 1. Propagated queries in the two controllers.

Levels 
(n)

Generated 
queries (k)

OpenMcast 
propagated 

queries

Multiflow 
propagated 

queries

2 100 300 100

3 100 700 100

4 100 1500 100
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Case study

To justify the use of Multiflow consider the 
IPTV case study. A typical IPTV service can 
count on a large subscriber base and provide a 
number of channels. For each channel you can 
associate a different multicast group, in which 
the source would be the station, and the rest of 
the group would be composed of the multicast 
subscribers who are watching the channel.

In a TV’s scenario, with a variety of chan-
nels, it is natural that users constantly alternate 
between channels. Since a different multicast 
group represents each channel, the hosts input 
and output tends to be intense. The work of 
Kim et al. (2009) studies the factors that con-
tribute to increased latency-switching chan-
nels in IPTV scenarios using IP multicast. In 
this work, the authors conclude that the IGMP 
protocol contributes significantly to delays in 
the order of seconds.

To illustrate the use of the Multiflow in the 
context of IPTV, consider the topology of Fig-
ure 3, with two hosts transmitting streaming 
video via two distinct multicast groups. To ac-
complish the transfer, we used the application 
VLC Media Player (Videolan, 2012). Through 
VLC we can set up a video stream to a specific 
multicast group between the server host and 
the client host, we can also perform the multi-
cast joining the group in question using VLC, 
which will display the video in real time.

Once participating in a multicast group 
receiving information from servers, one can 
simulate the changing of channels, like occurs 
in the IPTV.

To perform the channel changing, we sim-
ply perform an IGMP leave group operation 
in the client host and then perform a join op-
eration in another multicast group available 
on the network. Figure 5 shows a screenshot 
of the server host and two clients performing 
a video streaming in the network simulated 
by Mininet using the Multiflow to control the 
network.

It is possible to observe from Figure 5 that 
there are two active multicast groups: 224.0.1.1 
and 224.0.1.2, streaming videos viewed by two 
clients through the application VLC Player. 
In background of the videos, we can see win-
dows of UNIX terminals displaying the execu-
tion log on the client stations, servers and the 
network controller.

Final remark and further work

Multicast is a packet routing technique for 
a specific group of network hosts, where the 
principal benefit is the traffic reduction due to 
the support of switches in copying and send-
ing a message to several output ports. This 
paper proposes a clean-slate approach to mul-
ticast, logically centralized and based in Open-
Flow programmable networks, where during 
the setup of a multicast group, is realized the 
calculation of the best existing route between 
the source and client hosts, with the objective 
of reducing at maximum the delay with the 
processing of multicast events.

Defined the approach, a proof of concept 
was developed, called Multiflow. Experiments 
were realized to characterize the setup and 

Figure 5. Video-streaming screenshot using Multiflow.
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processing time of events. The results have 
shown that the utilization of a controller, with 
foreknowledge of the network topology, bring 
an overall performance improvement in the 
order of milliseconds, faster than other results 
published in literature of multicast IP. This im-
provement is due to the reduction of control 
information exchanged in the network and the 
best route calculation based in the topology. 
Therefore, the proposal of this paper can bring 
benefits to applications with multipoint com-
munication requirements in which the opera-
tions of join and leave of a multicast group are 
frequent and represent a significant portion of 
the entire control traffic, as occurs in IPTV.

As future work, the development of ex-
periments with scenarios more proximate of 
those found on Internet, directed to streaming 
services, mainly in scale level, is in the road-
map. Security questions, as for example the 
confidentiality of client and servers of a group 
and the transmitted messages are also of main 
concern.

Furthermore, the needs to evaluate heuris-
tics that can be applied to the algorithm of best 
route, in order to reduce its complexity are a 
key aspect.
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