
A bstract. In a dynamic distributed system with a very large number of nodes, such as a cloud, it is 
sometimes useful to discover the nodes that are up in the system at a given time. The number of those 
nodes changes continually along the operation time, as some nodes crash and some join the system. In this 
paper we introduce a presence service that was implemented over a gossip structure using an epidemic 
multicast protocol. Unlike other common presence services, our service is fully distributed. Due to epidemic 
dissemination and inherent redundancy provided by the multicast protocol, the service is resilient against 
message loss and link crashes. In a scenario we developed to evaluate the efficiency and scalability of our 
presence service, we show how presence notifications propagate to reach all nodes in the group and we 
also show how adjustments for the gossip configuration can benefit the efficiency and resilience of the 
notification dissemination. The results of the experimental evaluation show that following a distributed 
approach over epidemic communication leads to a resilient and scalable presence service.
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Introduction

A presence service aims to manage pres-
ence information about computer nodes in a 
given network. In order to be efficient and re-
silient in a dynamic large scale environment, 
it is necessary that the service overcomes scal-
ability problems. 

This paper introduces the development of a 
scalable and resilient presence service over a gos-
sip structure. Our service, called PingCloud, fol-
lows a different approach than those described in 
the IETF standards through RFCs 2778 (Rosen-
berg and Day, 2000) and 2779 (Day et al., 2000).

Currently, the existing presence services 
are centralized, as suggested by the RFCs. We 
choose a fully distributed approach to avoid 
a single point of failure. Each node in a given 
group collects and saves presence informa-
tion of the entire group of nodes. Each node is 
responsible for managing the presence infor-
mation extracted from notifications it receives 
from other nodes of the system. 

Considering time propagation and service 
availability, the distributed approach we pro-
pose can be more efficient than the centralized 

one that is commonly used for this kind of net-
work service. The penalty for the high avail-
ability and efficiency we can achieve with our 
approach is the great number of messages the 
nodes disseminate to their neighbors. A cer-
tain amount of these messages is redundant, 
which means that some nodes can receive 
multiple replicas of the same message.

PingCloud was built on using an epidemic 
multicast protocol (Pereira et al., 2003, 2004). 
Epidemic multicast is highly scalable and re-
silient to communication faults (Alvisi et al., 
2007). It does not provide strong guaranties 
(Birman, 2003), but ensures a high probability 
that the disseminated messages reach all the 
destination nodes (Eugster et al., 2004).

When using epidemic multicast, each pres-
ence notification sent from one node to its 
neighbors is retransmitted from these nodes to 
their own neighbors, which in turn retransmit 
the message to other neighbors, and so on. The 
neighbors of each node are chosen randomly 
among the nodes in the group.

We select the NeEM, Network-friendly 
Epidemic Multicast (Pereira et al., 2003), as the 
protocol to disseminate presence information. 
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NeEM provides mechanisms for an application 
to manage the ideal number of nodes to dis-
seminate a message during epidemic multicast. 
This number, called fan-out, is important to en-
sure a high probability of message delivery.

Epidemic protocols are inherently redun-
dant. This redundancy is the main reason why 
these protocols are resilient to message loss. 
However, NeEM has some mechanisms to 
mitigate unnecessary retransmissions (Leitão 
et al., 2007) but preserving resilience. We need 
also to avoid that a message remains being dis-
seminated forever between the members of a 
group. NeEM limits retransmission by using 
a protocol parameter called time-to-live (TTL). 
TTL determines the number of rounds a mes-
sage can be retransmitted.

In this paper, we show the tests we applied 
to demonstrate how efficient the dissemina-
tion of information is. We developed a dem-
onstration scenario using a single computer, 
since the synchronization of events based on a 
single clock simplifies monitoring the test ex-
periment. In this scenario, one node dissemi-
nates a notification using epidemic multicast. 
Each node in the sequence floods the notifica-
tion message to other nodes within the group. 

For each experiment using this scenario, 
we evaluated the time of dissemination by var-
ying the number of nodes. In a second analy-
sis we evaluated the use of different fan-outs. 
Combining fan-out, time-to-live and number 
of nodes allows determining the probability 
that a message can reach the entire network. 
The results show that a distributed approach 
over epidemic communication leads to an ef-
ficient, resilient and scalable presence service.

The paper is organized as follows. The sec-
tion “Epidemic Multicast” presents its basic 
concepts and the section “NeEM” describes 
the used epidemic multicast protocol. In the 
section “Presence Service Proposal” we de-
scribe how our service operates and explain 
some “Implementation Issues”. In section 
“Scalability and Resilience” we discuss issues 
related to the main properties of Epidemic 
Multicast. The test experiments are described 
in section “PingCloud Evaluation”. In sec-
tion “Related Work” we present some exist-
ing presence services. Finally, we present our 
“Conclusions” and possible future works.

Epidemic Multicast

Epidemic multicast is a special case of 
group communication protocol that is also 

called gossip-based or probabilistic protocol. 
It is easy to see that the epidemic protocol is 
inherently redundant. We can do an analogy 
with a gossip being disseminated in a group of 
friends. One person tells a story to some group 
members, possibly chosen at random, that in 
turn send the message to some other friends. 
Each one that hears the story will tell it again 
to other group members. Each one of these 
groups can overlap with the group of friends 
of their friends that already know the story. 
And so we observe that each person would 
probably hear the same story more than once. 

An epidemic dissemination (Eugster et al., 
2004) obeys the following mode of operation: 
each node connects itself with a number of 
nodes k, forming the overlay. For each node 
j and for each received message, the node j 
retransmits the message to f (fan-out) nodes, 
where  f < k. In other words, the node j retrans-
mits each message to a number of neighbors 
that is less than the number of established con-
nections in the overlay. 

The Figures 1 to 4 illustrate the behavior 
of an epidemic protocol in a group with k = 
18 nodes and fan-out f = 3. Figure 1 shows an 
originator node (the seed) disseminating a 
message to 3 neighbors. It is the only one in-
fected, i.e. it is the only node that knows the 
message. 

At the end of the first round 4 nodes are in-
fected (the seed and its fan-out nodes).

Figure 2 shows the second round. All nodes 
infected in the first round flood the message to 
their fan-out nodes.

Some messages can be received two or 
more times during the second round. In our 
example this will occur on node N of Figure 2. 
Some messages, as for example m, can be 
sent to nodes that had already received the 

Figure 1. Epidemic multicast with fan-out of 3.



52 Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

message in an earlier round. At the end of this 
round 11 nodes become infected.

Figure 3 shows the third round. The number 
of messages grows exponentially. 21 messages 
are now flooding through the network. But the 
probability that a node receives a redundant 
message also increases. Out of 21 messages, 7 
will reach nodes that are already infected, 14 
will reach seven new nodes (7 messages are 
redundant).

All nodes in Figure 3 become contaminated 
at the end of the third round. However, a situ-
ation as the one shown in Figure 4 could also 
happen. The grey node does not receive any 
message during three flooding rounds. It was 
not randomly chosen from any other node to 
form its fan-out set during the three rounds.  

To enhance the chance to infect the grey node, 
one solution could be increasing the number of 
rounds. Other solution is increasing the fan-out. 
But the nodes that form the fan-out set are cho-
sen randomly at each node in a round and it is 
not possible to guarantee that all nodes will re-
ceive a given message, except statistically.

Increasing the number of rounds also in-
creases the propagation time to multicast a mes-
sage. Increasing the fan-out increases the traffic 
through the network. So, a proper configura-
tion of f and TTL must be carefully chosen.

Redundancy allows for enhanced fault tol-
erance (Birman, 2003). If one or more nodes 
crash, some nodes are guaranteed to receive 
the message and flood it away.

For each retransmission round different 
nodes among the k nodes of the overlay are 
chosen (f) at random. Periodically new con-
nections are established, changing the over-
lay. This enables new users to join the group 
and also current users to leave the group. This 
characteristic also enhances the group resil-
ience against faults: faulty nodes can be eas-
ily isolated and the group reconfigures itself 
automatically and dynamically.

Epidemic multicast protocols show a high 
performance. The performance is independ-
ent of the number of k nodes in the overlay. 
These protocols are also scalable to a large 
number of participants. They are also re-
silient against network and nodes failures. 
However, these protocols generate a large 
message traffic in the network due to their in-
herent redundancy.

Several epidemic protocols can be found 
in the technical literature (Frey et al., 2009; 
Lim et al., 2011; Wuhib et al., 2012). They 
vary in the way they achieve efficiency using 
the network.

NeEM

As already mentioned, our service uses 
the Network-friendly Epidemic Multicast 
(NeEM) protocol. This protocol runs into 
every node of an overlay and is implemented 
over TCP connections.

The NeEM protocol can also mitigate the 
high usage of network capacity due unnecessary 
retransmissions: a large number of message re-
transmissions is inherent in gossip protocols. To 
avoid it, NeEM can operate in two modes: eager 
and lazy. The first one, eager, is automatically 
chosen for short messages. In this mode the mes-
sage is retransmitted once it is received.

By contrast, when the message is long, the 
lazy mode becomes active. In this mode, the 
protocol sends a short advertisement message 
to the connected nodes asking whether they 
wish the complete message. The complete 
message is only sent when an acknowledg-
ment is received (Leitão et al., 2004).

Figure 2. Second round of an epidemic multicast.

Figure 3. Third round of an epidemic multicast.
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Presence Service Proposal

To manage the information of which nodes 
are present in a given group, we built a pres-
ence service called PingCloud (Wilges et al., 
2012). This name was chosen because the 
group of overlay nodes can compose a cloud, 
but this service is not restricted to clouds. It 
can also be used to manage membership for 
large groups in group communication middle-
ware or a simple presence service in any kind 
of network.

Usually presence services aim to manage 
information about entities that are present in 
a network, which can be users, devices or an 
application. 

The configuration of three main param-
eters is essential to the proper operation of the 
presence service: transmission periodicity, in-
formation aging and resolution.

The first parameter (transmission periodic-
ity) sets the time interval between two notifica-
tion messages. Each node that wishes to inform 
its presence sends a message to the group no-
tifying this. To ensure that this information is 
up to date, these notifications must be sent pe-
riodically and the shorter this time interval is, 
the more accurate is the presence information. 

The second parameter (information ag-
ing) is used to determine when presence in-
formation has become obsolete and has to be 
removed from its presence list. In practical 
terms, this parameter determines how long 
the presence information of a node can be 
used without being updated. To be useful, this 
parameter should be greater than the “trans-
mission periodicity” parameter.

Finally, the third parameter (resolution) 
determines how often a node scans its pres-
ence list looking for obsolete information. This 

parameter should be shorter than the other 
two parameters.

To join the group and use the presence 
service, a node needs to know at least one 
node present in the overlay group.

In PingCloud, there is just one presence 
type. Other presence services, such as instant 
message applications, identify whether a user 
is available, away and busy, for instance. The 
presence of a computer in a network has oth-
erwise only two possible states: present or not 
present. To inform its presence, a node sim-
ply sends a presence notification. If it is not 
present or if it wishes to leave, a node simply 
no longer sends any notifications.

The presence notification message also 
carries a timestamp to allow an ordering 
of events.

The main difference between PingCloud 
and other related services is the maintenance 
of the presence list. The common presence 
services follow a centralized approach, where 
a central server is responsible for managing the 
presence information of the entire network. 
The central server is clearly a single point of 
failure. It also presents scalability issues that 
jeopardize the growth of the group.

In contrast the distributed architecture of 
PingCloud each node manages its own pres-
ence list. Each list starts empty and is updated 
within established time intervals (transmis-
sion periodicity), removing the nodes that do 
not send notifications within another interval 
(information aging) and adding new nodes 
that wish to join the overlay group.

Implementation Issues

We can break down the management of the 
presence list in two tasks: add nodes and re-
move nodes.

A node inserts presence information into 
a presence list when it receives a notification 
message. The task of removing presence in-
formation is accomplished by a special thread, 
which runs periodically, according to the “res-
olution” parameter.

We have considered performance issues 
in the design of the presence service. We have 
realized that two parameters determine the 
CPU load: the number of nodes in the group 
and the “resolution” parameter. The number 
of nodes in the group induces the size of the 
presence list and the time spent to scan it. The 
parameter “resolution” determines how often 
this list is scanned.

Figure 4. Incomplete multicast.
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We have used two data structures to man-
age presence information: a hash table and an 
ordered linked list. This list is ordered accord-
ing to the forecast removal time.

Each element of the list contains the node 
identification (presence information) and the 
due removal time. The hash table key is the node 
identification and the value stored is a pointer to 
the associated element in the linked list.

To include a node’s presence information 
we search for its identification in the hash ta-
ble, which returns the pointer to the associ-
ated element in the linked list, if it exists. In 
case the element exists, it will be removed 
from the hash table and the linked list. Then, 
the new node identification will be inserted in 
the linked list and the hash table. The proce-
dure described avoids scanning the linked list. 
Thus, the time spent is mainly determined by 
the hash table operations.

When the special thread runs, the scanning 
of the linked list is started. The older informa-
tion is checked first. The expired elements are 
removed and the process stops when a non-
expired element is found. Then, a full scan of 
the list is not necessary. The CPU time is spent 
to process the elements that were actually 
changed.

Figure 5 shows the two data structures: 
linked list and hash table. Also, we can see the 
cross-reference between the linked list and the 
hash table.

Scalability and Resilience

An important issue in distributed systems 
is scalability. Birman (2003) states that strong 
properties, as for example fault tolerance, con-
sensus and consistency, do not scale well. A 
cloud is a huge system with scalability prob-
lems. We can see a cloud as a group of processes 
or nodes that need to communicate to reach an 

agreement or to know about the existence and 
states of other nodes in a large dynamic group.

Of course, not all applications and services 
need to provide strong properties. But when 
properties such as reliability or consistency are 
required, we cannot ignore scalability issues. 
In this arena the natural redundancy provided 
by epidemic multicast seems to be a natural 
choice for communication in a large scale com-
puter group.

Epidemic multicast is highly scalable and 
resilient to communication faults. However, it 
depends on an appropriate choice of param-
eters, such as TTL and fan-out values (Eugster 
et al., 2004). The configuration of the param-
eters mentioned above may decide if the dis-
semination is really successful.

Some authors (Carvalho et al., 2007; Alvisi 
et al., 2007) propose ways to get both resilience 
and efficiency. Resilience is achieved by add-
ing redundancy; to get efficiency, in general, 
one tries to eliminate redundancy.

When using epidemic protocols, resilience 
can be measured by a probability (in case of 
messages, this means a message delivery 
probability). The higher the probability is, the 
higher is the number of messages: thus, higher 
network traffic and a worse efficiency.

Thus, to validate the service we built, we 
must consider varying the protocol parame-
ters to analyze the protocol behavior and track 
the flow of messages to see whether a notifica-
tion reaches all the nodes in a group.

PingCloud Evaluation

We built a scenario to validate PingCloud. 
The scenario aims to demonstrate PingCloud’s 
operation and also to test the service. 

This scenario consists of a single computer 
which simulates several nodes. One node, the 
seed, sends the notification. This notification 
propagates through the network to the other 
members of the group. 

Using this scenario we made two evalu-
ation experiments. Both evaluations aim at 
showing the dissemination of notifications 
through the group. The first evaluation dis-
regards the propagation delay and varies the 
number of nodes that compose the group. 

In Figure 6, we can see the three configura-
tions used in the evaluations: (a) 15 nodes, (b) 
25 nodes and (c) 40 nodes. 

For the second evaluation we kept the total 
number of nodes unchanged and set the de-
lay propagation to about 100 ms to all packets. Figure 5. PingCloud data structures.



55Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

Then, we used a different fan-out value for 
each configuration. One of these scenarios 
(fan-out = 3) can be seen in figure 7, where we 
represent two rounds (three snapshots). In the 
figure we can see the seed node (red node in 
t=0ms) and the nodes “infected” at time 200ms 
(red nodes in t=200ms).

For the second evaluation we used a fault 
injection tool, FIRMAMENT (Drebes et al., 
2006.) The tool allows emulating network 
communication faults like message loss, mes-
sage corruption as well as delay of packets. 
These faults are commonly used to evaluate 
the fault coverage and resilience of communi-
cation protocols (Siqueira et al., 2009) in fault 
scenarios.

For both evaluations we simulated a net-
work with a fixed number of nodes and differ-
ent fan-out configurations.According to this 
scenario and settings, some test experiments 
were done. The results are described in this 
section.

Dissemination Time 
of a Notification

The first evaluation checked how long one 
presence notification takes to reach all present 
nodes in a group. Here we disregarded the 
propagation time of the notification from one 
node to the next one. We built a scenario with 
different numbers of nodes in the group to 
evaluate the service.

The experiment runs as follows: one node, 
the seed, sends just one single notification 
message using epidemic multicast and then 
we collect, through generated logs, the time 

this message arrives in all other nodes of 
the group. 

The NeEM parameters were adjusted to a 
fan-out of 5 and time-to-live of 6. These pa-
rameters mean that each node retransmits the 
message to 5 other nodes and the message will 
be ignored after 6 rounds.

To send just one message from the seed 
node (the originator), we adjust the parameter 
corresponding to the notification interval to al-
low the seed to send only one message during 
the experiment. The seed node does not send 
two or more messages during the experiment 
because we set a large time interval. This guar-
antees that we can follow the propagation of 
this message.

The experiment shows, as expected, that 
the dissemination time of presence informa-
tion does not grow linearly with the increas-
ing number of network nodes. This is because 
PingCloud uses an epidemic dissemination 
protocol.

At the first moment, when just a few nodes 
have the message, there is little redundancy 
of retransmission, and so the transmission to 
f nodes is complete, or practically complete. 
Later, when a large number of nodes have re-
ceived the notification, there is much useless 
retransmission; almost all messages that are 
received are duplicate ones.

In the last hops the retransmission is less 
efficient, because few of the messages that the 
nodes received are actually new, which means 
not already received in those nodes. The re-
dundant messages are silently dropped.

The redundancy is an important character-
istic in epidemic protocols, because the proto-
col’s fault tolerance relies on it. Redundancy 
enhances the resilience against node crashes, 
link crashes and loss of messages. Redun-
dancy also allows for very fast propagation 
and scalability.

To follow the dissemination of a message 
in the scenario just described, we performed 
simulations for 15, 25 and 40 nodes forming 
the group. With 40 nodes we reach the limit 
using only one computer. With more than 40 
nodes, the result might be affected by the large 
number of simultaneous threads.

Figure 8 shows an example where it is pos-
sible to visualize the fast dissemination of a 
notification in its initial phase and its loss of 
performance over time. 

Figure 8 displays the time to reach all 
nodes in a group using an epidemic multi-
cast protocol with fan-out of 5 and TTL of 6. 

Figure 6. First evaluation.

Figure 7. Second evaluation.
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The number of nodes in the group varies from 
15 to 24 and to 40.

Dissemination time 
for different fan-outs 

In this evaluation experiment we run two 
simulations, both with 30 nodes belonging to 
the group. The first simulation uses a fan-out 
of 3, and the second a fan-out of 7. 

For this evaluation, we use a fault injection 
tool called FIRMAMENT to set 100 ms delay 
in all transmitted packets. Thus, with fixed 
delays it is possible to analyze each round of 
message transmission. The introduced delays 
permit emulating a scenario that is closer to 
real network environments, thus compensat-
ing for the fact that the experiments are run-
ning in a single computer.

First the node which wishes to transmit a 
notification, the seed, sends the notification to 
f (fan-out) other nodes in the group. As none 
of these nodes has received the notification 
before, all transmissions are effective, which 
means it transports a new notification, not a 
duplicate one.

In a second round, each one of the f nodes 
which received the message will retransmit it 
to f other nodes. Some of the destination nodes 
in this round may have received the message 
before, so this message can be potentially re-
dundant. In the following rounds, this can 
happen again, with the difference that the 
probability of receiving a redundant message 
grows in each round. 

Now, analyzing the simulation to fan-out 3, 
it is possible to observe in the first round that 3 
notifications are going to be sent. In the second 

round, are going to be there will be 9 notifica-
tions, where there is a probability that some 
messages are redundant. In the third round, 3 
times the number of nodes which received the 
message in the previous round will be trans-
mitted minus those that receive redundant 
message, since these nodes simply discard the 
message. Thus, it is important to observe that 
if in a round all retransmitted messages are re-
dundant, all will be dropped and the propaga-
tion will stop. None of the nodes retransmits 
a message it has already retransmitted before.

The experiment for a fan-out of 7 is very 
similar to the last experiment that uses a fan-
out of 3. But now each node must retransmit 
the message to 7 other nodes. It is easy to see 
that the dissemination is faster and less rounds 
will be needed for the notification message 
that was originated in the seed to reach all the 
nodes in the group.

According to this, in Figure 9 it is possible 
to observe the different rounds of retransmis-
sion, separated by 100ms of interval. We can 
see also that for larger fan-outs less rounds of 
retransmission are needed to reach all nodes.

It is important to emphasize that the fault 
injector was used in this scenario just to com-
pensate for the fact that the evaluation runs in a 
single computer and this is not representative of 
a real network environment. The delay was in-
jected to emulate the  network’s natural delays, 
and it cannot be considered as a fault emulation.

Related work

We describe some examples of presence 
services. As we are going to see, the services 
described here follow a centralized approach 

Figure 8. Time to reach all nodes in ms
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except for the last one (Celesti et al. 2010), where 
distributed agents collect presence information 
and publish them in a central location.

Comparing these services with PingCloud, 
the main point to emphasize is that our service 
has no single point of failure. This problem is 
typical of centralized approaches. PingCloud 
can also scale better than any centralized ap-
proach. The reliance and scalability reached 
by our proposal came with a penalty: the 
flooding of notification messages can affect the 
traffic load of the network.

Extensible Message
and Presence Protocol

XMPP, Extensible Message and Presence 
Protocol (Saint-Andre, 2004, 2011) is an open-
source protocol for instant messaging, presence 
information and contact list maintenance. Its 
architecture follows a centralized approach. 
The presence list resides on servers which me-
diate all the communication between the users. 
All the nodes that belong to the group are ad-
dressed through a single identifier. Any two 
users wishing to notify their presence and com-
municate with each other must, each one, con-
nect to the XMPP server. These servers send the 
presence information and exchange messages 
between these two users. The communication 
is done exchanging messages in XML format.

Simple

SIMPLE (Niemi, 2004) is a presence serv-
ice protocol and instant messaging suite based 
on SIP protocol (Session Initiation Protocol) 

(Johnston, 2009), which is a protocol for creating, 
modifying, and terminating multimedia ses-
sions like, for example, voice application over 
IP. SIMPLE adds three methods to SIP to ex-
change messages and presence information 
between users:

•  Subscribe: method invoked when a node 
wishes to receive presence information.

•  Notify: method used to send presence in-
formation

•  Message: method invoked to send mes-
sages.

The communication between two users can 
be done by P2P, since the nodes know each 
other in advance. If the users do not know each 
other, they use a central server which holds the 
presence list and the addresses of the users.

Wireless Village
Wireless Village – WV (OMA, 2001) was 

conceived by OMA – Open Mobile Alliance. 
It was developed to provide a set of univer-
sal specifications for mobile instant messaging 
and presence services. It uses the client-server 
architecture. The clients are any mobile devic-
es, and the server is the Wireless Village Serv-
er. The WV server is responsible for managing 
the presence information as well as other fea-
tures, like exchanging messages, group man-
agement, group membership and file sharing.

CCFM Discovery Agent

Celesti et al. (2010) propose an architecture 
for cross cloud federation management in a 
federate environment composed of agents, and 

Figure 9. Multicast time with different fan-outs.
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one of them is a discovery agent. It manages 
the discovery process among all the available 
clouds. The purpose here is not to find avail-
able nodes but the presence of foreign clouds.

The discovery process is implemented in a 
distributed way using the publisher-subscriber 
approach. An application publishes its own set 
of information at a centralized location from 
which only a set of authorized (subscribed) 
entities are able to retrieve it. Even though 
such location is logically centralized, it can be 
implemented in a distributed way, and it also 
reaches resilience against central node crash.

Conclusions

We can conclude that it is advantageous 
to use a distributed approach associated with 
epidemic multicast to build a presence service. 
The results show that this approach allows for 
good performance and better scalability and 
resilience against network faults in compari-
son to traditional centralized approaches. The 
results also demonstrate that the NeEM pro-
tocol used to support the epidemic multicast 
was an opportune choice for the dissemination 
of presence notification. 

It is also possible to observe that config-
uring appropriately the protocol parameters 
is fundamental for its correct operation. The 
parameters can be modified by an application 
according to its needs. For example, in a net-
work with a large percentage of message loss, 
the application can increase the redundancy 
by increasing the fan-out, thus guaranteeing a 
higher probability of message delivery.

Some issues are not explored in this first 
version of the presence service, including 
some security mechanism to join the group. 
Other important point to be investigated is 
improving the application so that it manages 
the NeEM parameters at runtime. Parameters 
as fan-out and time-to-live are related to the 
number of nodes present in the group and, 
thus, must be managed by the application.

For future works, we are planning tests 
with a larger number of computers to simu-
late overlay groups in larger scales. We also 
want to complement the tests with commu-
nication fault injection, dropping messages, 
delaying some messages, crashing nodes and 
links. Testing in this way, besides the service 
efficiency, we can also extract better perform-
ance measures under faults, fault coverage 
and service availability. 
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