
A bstract. In a dynamic distributed system with a very large number of nodes, such as a cloud, it is
sometimes useful to discover the nodes that are up in the system at a given time. The number of those
nodes changes continually along the operation time, as some nodes crash and some join the system. In this
paper we introduce a presence service that was implemented over a gossip structure using an epidemic
multicast protocol. Unlike other common presence services, our service is fully distributed. Due to epidemic
dissemination and inherent redundancy provided by the multicast protocol, the service is resilient against
message loss and link crashes. In a scenario we developed to evaluate the efficiency and scalability of our
presence service, we show how presence notifications propagate to reach all nodes in the group and we
also show how adjustments for the gossip configuration can benefit the efficiency and resilience of the
notification dissemination. The results of the experimental evaluation show that following a distributed
approach over epidemic communication leads to a resilient and scalable presence service.

Key words: Presence service, epidemic protocols, resilience, fault tolerance, clouds

Journal of Applied Computing Research, 2(1):50-59
January-June 2012
© 2012 by Unisinos - doi: 10.4013/jacr.2012.21.05

A Distributed Presence Service over Epidemic Multicast

Peterson Wilges, Taisy S. Weber, Sérgio L. Cechin, Regina L.O. Moraes
Universidade Federal do Rio Grande do Sul. Av. Bento Gonçalves, 9500, 91509-900, Porto Alegre, RS, Brazil
pwilges@inf.ufrgs.br, taisy@inf.ufrgs.br, cechin@inf.ufrgs.br, regina@ft.unicamp.br

Introduction

A presence service aims to manage pres-
ence information about computer nodes in a
given network. In order to be efficient and re-
silient in a dynamic large scale environment,
it is necessary that the service overcomes scal-
ability problems.

This paper introduces the development of a
scalable and resilient presence service over a gos-
sip structure. Our service, called PingCloud, fol-
lows a different approach than those described in
the IETF standards through RFCs 2778 (Rosen-
berg and Day, 2000) and 2779 (Day et al., 2000).

Currently, the existing presence services
are centralized, as suggested by the RFCs. We
choose a fully distributed approach to avoid
a single point of failure. Each node in a given
group collects and saves presence informa-
tion of the entire group of nodes. Each node is
responsible for managing the presence infor-
mation extracted from notifications it receives
from other nodes of the system.

Considering time propagation and service
availability, the distributed approach we pro-
pose can be more efficient than the centralized

one that is commonly used for this kind of net-
work service. The penalty for the high avail-
ability and efficiency we can achieve with our
approach is the great number of messages the
nodes disseminate to their neighbors. A cer-
tain amount of these messages is redundant,
which means that some nodes can receive
multiple replicas of the same message.

PingCloud was built on using an epidemic
multicast protocol (Pereira et al., 2003, 2004).
Epidemic multicast is highly scalable and re-
silient to communication faults (Alvisi et al.,
2007). It does not provide strong guaranties
(Birman, 2003), but ensures a high probability
that the disseminated messages reach all the
destination nodes (Eugster et al., 2004).

When using epidemic multicast, each pres-
ence notification sent from one node to its
neighbors is retransmitted from these nodes to
their own neighbors, which in turn retransmit
the message to other neighbors, and so on. The
neighbors of each node are chosen randomly
among the nodes in the group.

We select the NeEM, Network-friendly
Epidemic Multicast (Pereira et al., 2003), as the
protocol to disseminate presence information.

51Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

NeEM provides mechanisms for an application
to manage the ideal number of nodes to dis-
seminate a message during epidemic multicast.
This number, called fan-out, is important to en-
sure a high probability of message delivery.

Epidemic protocols are inherently redun-
dant. This redundancy is the main reason why
these protocols are resilient to message loss.
However, NeEM has some mechanisms to
mitigate unnecessary retransmissions (Leitão
et al., 2007) but preserving resilience. We need
also to avoid that a message remains being dis-
seminated forever between the members of a
group. NeEM limits retransmission by using
a protocol parameter called time-to-live (TTL).
TTL determines the number of rounds a mes-
sage can be retransmitted.

In this paper, we show the tests we applied
to demonstrate how efficient the dissemina-
tion of information is. We developed a dem-
onstration scenario using a single computer,
since the synchronization of events based on a
single clock simplifies monitoring the test ex-
periment. In this scenario, one node dissemi-
nates a notification using epidemic multicast.
Each node in the sequence floods the notifica-
tion message to other nodes within the group.

For each experiment using this scenario,
we evaluated the time of dissemination by var-
ying the number of nodes. In a second analy-
sis we evaluated the use of different fan-outs.
Combining fan-out, time-to-live and number
of nodes allows determining the probability
that a message can reach the entire network.
The results show that a distributed approach
over epidemic communication leads to an ef-
ficient, resilient and scalable presence service.

The paper is organized as follows. The sec-
tion “Epidemic Multicast” presents its basic
concepts and the section “NeEM” describes
the used epidemic multicast protocol. In the
section “Presence Service Proposal” we de-
scribe how our service operates and explain
some “Implementation Issues”. In section
“Scalability and Resilience” we discuss issues
related to the main properties of Epidemic
Multicast. The test experiments are described
in section “PingCloud Evaluation”. In sec-
tion “Related Work” we present some exist-
ing presence services. Finally, we present our
“Conclusions” and possible future works.

Epidemic Multicast

Epidemic multicast is a special case of
group communication protocol that is also

called gossip-based or probabilistic protocol.
It is easy to see that the epidemic protocol is
inherently redundant. We can do an analogy
with a gossip being disseminated in a group of
friends. One person tells a story to some group
members, possibly chosen at random, that in
turn send the message to some other friends.
Each one that hears the story will tell it again
to other group members. Each one of these
groups can overlap with the group of friends
of their friends that already know the story.
And so we observe that each person would
probably hear the same story more than once.

An epidemic dissemination (Eugster et al.,
2004) obeys the following mode of operation:
each node connects itself with a number of
nodes k, forming the overlay. For each node
j and for each received message, the node j
retransmits the message to f (fan-out) nodes,
where f < k. In other words, the node j retrans-
mits each message to a number of neighbors
that is less than the number of established con-
nections in the overlay.

The Figures 1 to 4 illustrate the behavior
of an epidemic protocol in a group with k =
18 nodes and fan-out f = 3. Figure 1 shows an
originator node (the seed) disseminating a
message to 3 neighbors. It is the only one in-
fected, i.e. it is the only node that knows the
message.

At the end of the first round 4 nodes are in-
fected (the seed and its fan-out nodes).

Figure 2 shows the second round. All nodes
infected in the first round flood the message to
their fan-out nodes.

Some messages can be received two or
more times during the second round. In our
example this will occur on node N of Figure 2.
Some messages, as for example m, can be
sent to nodes that had already received the

Figure 1. Epidemic multicast with fan-out of 3.

52 Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

message in an earlier round. At the end of this
round 11 nodes become infected.

Figure 3 shows the third round. The number
of messages grows exponentially. 21 messages
are now flooding through the network. But the
probability that a node receives a redundant
message also increases. Out of 21 messages, 7
will reach nodes that are already infected, 14
will reach seven new nodes (7 messages are
redundant).

All nodes in Figure 3 become contaminated
at the end of the third round. However, a situ-
ation as the one shown in Figure 4 could also
happen. The grey node does not receive any
message during three flooding rounds. It was
not randomly chosen from any other node to
form its fan-out set during the three rounds.

To enhance the chance to infect the grey node,
one solution could be increasing the number of
rounds. Other solution is increasing the fan-out.
But the nodes that form the fan-out set are cho-
sen randomly at each node in a round and it is
not possible to guarantee that all nodes will re-
ceive a given message, except statistically.

Increasing the number of rounds also in-
creases the propagation time to multicast a mes-
sage. Increasing the fan-out increases the traffic
through the network. So, a proper configura-
tion of f and TTL must be carefully chosen.

Redundancy allows for enhanced fault tol-
erance (Birman, 2003). If one or more nodes
crash, some nodes are guaranteed to receive
the message and flood it away.

For each retransmission round different
nodes among the k nodes of the overlay are
chosen (f) at random. Periodically new con-
nections are established, changing the over-
lay. This enables new users to join the group
and also current users to leave the group. This
characteristic also enhances the group resil-
ience against faults: faulty nodes can be eas-
ily isolated and the group reconfigures itself
automatically and dynamically.

Epidemic multicast protocols show a high
performance. The performance is independ-
ent of the number of k nodes in the overlay.
These protocols are also scalable to a large
number of participants. They are also re-
silient against network and nodes failures.
However, these protocols generate a large
message traffic in the network due to their in-
herent redundancy.

Several epidemic protocols can be found
in the technical literature (Frey et al., 2009;
Lim et al., 2011; Wuhib et al., 2012). They
vary in the way they achieve efficiency using
the network.

NeEM

As already mentioned, our service uses
the Network-friendly Epidemic Multicast
(NeEM) protocol. This protocol runs into
every node of an overlay and is implemented
over TCP connections.

The NeEM protocol can also mitigate the
high usage of network capacity due unnecessary
retransmissions: a large number of message re-
transmissions is inherent in gossip protocols. To
avoid it, NeEM can operate in two modes: eager
and lazy. The first one, eager, is automatically
chosen for short messages. In this mode the mes-
sage is retransmitted once it is received.

By contrast, when the message is long, the
lazy mode becomes active. In this mode, the
protocol sends a short advertisement message
to the connected nodes asking whether they
wish the complete message. The complete
message is only sent when an acknowledg-
ment is received (Leitão et al., 2004).

Figure 2. Second round of an epidemic multicast.

Figure 3. Third round of an epidemic multicast.

53Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

Presence Service Proposal

To manage the information of which nodes
are present in a given group, we built a pres-
ence service called PingCloud (Wilges et al.,
2012). This name was chosen because the
group of overlay nodes can compose a cloud,
but this service is not restricted to clouds. It
can also be used to manage membership for
large groups in group communication middle-
ware or a simple presence service in any kind
of network.

Usually presence services aim to manage
information about entities that are present in
a network, which can be users, devices or an
application.

The configuration of three main param-
eters is essential to the proper operation of the
presence service: transmission periodicity, in-
formation aging and resolution.

The first parameter (transmission periodic-
ity) sets the time interval between two notifica-
tion messages. Each node that wishes to inform
its presence sends a message to the group no-
tifying this. To ensure that this information is
up to date, these notifications must be sent pe-
riodically and the shorter this time interval is,
the more accurate is the presence information.

The second parameter (information ag-
ing) is used to determine when presence in-
formation has become obsolete and has to be
removed from its presence list. In practical
terms, this parameter determines how long
the presence information of a node can be
used without being updated. To be useful, this
parameter should be greater than the “trans-
mission periodicity” parameter.

Finally, the third parameter (resolution)
determines how often a node scans its pres-
ence list looking for obsolete information. This

parameter should be shorter than the other
two parameters.

To join the group and use the presence
service, a node needs to know at least one
node present in the overlay group.

In PingCloud, there is just one presence
type. Other presence services, such as instant
message applications, identify whether a user
is available, away and busy, for instance. The
presence of a computer in a network has oth-
erwise only two possible states: present or not
present. To inform its presence, a node sim-
ply sends a presence notification. If it is not
present or if it wishes to leave, a node simply
no longer sends any notifications.

The presence notification message also
carries a timestamp to allow an ordering
of events.

The main difference between PingCloud
and other related services is the maintenance
of the presence list. The common presence
services follow a centralized approach, where
a central server is responsible for managing the
presence information of the entire network.
The central server is clearly a single point of
failure. It also presents scalability issues that
jeopardize the growth of the group.

In contrast the distributed architecture of
PingCloud each node manages its own pres-
ence list. Each list starts empty and is updated
within established time intervals (transmis-
sion periodicity), removing the nodes that do
not send notifications within another interval
(information aging) and adding new nodes
that wish to join the overlay group.

Implementation Issues

We can break down the management of the
presence list in two tasks: add nodes and re-
move nodes.

A node inserts presence information into
a presence list when it receives a notification
message. The task of removing presence in-
formation is accomplished by a special thread,
which runs periodically, according to the “res-
olution” parameter.

We have considered performance issues
in the design of the presence service. We have
realized that two parameters determine the
CPU load: the number of nodes in the group
and the “resolution” parameter. The number
of nodes in the group induces the size of the
presence list and the time spent to scan it. The
parameter “resolution” determines how often
this list is scanned.

Figure 4. Incomplete multicast.

54 Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

We have used two data structures to man-
age presence information: a hash table and an
ordered linked list. This list is ordered accord-
ing to the forecast removal time.

Each element of the list contains the node
identification (presence information) and the
due removal time. The hash table key is the node
identification and the value stored is a pointer to
the associated element in the linked list.

To include a node’s presence information
we search for its identification in the hash ta-
ble, which returns the pointer to the associ-
ated element in the linked list, if it exists. In
case the element exists, it will be removed
from the hash table and the linked list. Then,
the new node identification will be inserted in
the linked list and the hash table. The proce-
dure described avoids scanning the linked list.
Thus, the time spent is mainly determined by
the hash table operations.

When the special thread runs, the scanning
of the linked list is started. The older informa-
tion is checked first. The expired elements are
removed and the process stops when a non-
expired element is found. Then, a full scan of
the list is not necessary. The CPU time is spent
to process the elements that were actually
changed.

Figure 5 shows the two data structures:
linked list and hash table. Also, we can see the
cross-reference between the linked list and the
hash table.

Scalability and Resilience

An important issue in distributed systems
is scalability. Birman (2003) states that strong
properties, as for example fault tolerance, con-
sensus and consistency, do not scale well. A
cloud is a huge system with scalability prob-
lems. We can see a cloud as a group of processes
or nodes that need to communicate to reach an

agreement or to know about the existence and
states of other nodes in a large dynamic group.

Of course, not all applications and services
need to provide strong properties. But when
properties such as reliability or consistency are
required, we cannot ignore scalability issues.
In this arena the natural redundancy provided
by epidemic multicast seems to be a natural
choice for communication in a large scale com-
puter group.

Epidemic multicast is highly scalable and
resilient to communication faults. However, it
depends on an appropriate choice of param-
eters, such as TTL and fan-out values (Eugster
et al., 2004). The configuration of the param-
eters mentioned above may decide if the dis-
semination is really successful.

Some authors (Carvalho et al., 2007; Alvisi
et al., 2007) propose ways to get both resilience
and efficiency. Resilience is achieved by add-
ing redundancy; to get efficiency, in general,
one tries to eliminate redundancy.

When using epidemic protocols, resilience
can be measured by a probability (in case of
messages, this means a message delivery
probability). The higher the probability is, the
higher is the number of messages: thus, higher
network traffic and a worse efficiency.

Thus, to validate the service we built, we
must consider varying the protocol parame-
ters to analyze the protocol behavior and track
the flow of messages to see whether a notifica-
tion reaches all the nodes in a group.

PingCloud Evaluation

We built a scenario to validate PingCloud.
The scenario aims to demonstrate PingCloud’s
operation and also to test the service.

This scenario consists of a single computer
which simulates several nodes. One node, the
seed, sends the notification. This notification
propagates through the network to the other
members of the group.

Using this scenario we made two evalu-
ation experiments. Both evaluations aim at
showing the dissemination of notifications
through the group. The first evaluation dis-
regards the propagation delay and varies the
number of nodes that compose the group.

In Figure 6, we can see the three configura-
tions used in the evaluations: (a) 15 nodes, (b)
25 nodes and (c) 40 nodes.

For the second evaluation we kept the total
number of nodes unchanged and set the de-
lay propagation to about 100 ms to all packets. Figure 5. PingCloud data structures.

55Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

Then, we used a different fan-out value for
each configuration. One of these scenarios
(fan-out = 3) can be seen in figure 7, where we
represent two rounds (three snapshots). In the
figure we can see the seed node (red node in
t=0ms) and the nodes “infected” at time 200ms
(red nodes in t=200ms).

For the second evaluation we used a fault
injection tool, FIRMAMENT (Drebes et al.,
2006.) The tool allows emulating network
communication faults like message loss, mes-
sage corruption as well as delay of packets.
These faults are commonly used to evaluate
the fault coverage and resilience of communi-
cation protocols (Siqueira et al., 2009) in fault
scenarios.

For both evaluations we simulated a net-
work with a fixed number of nodes and differ-
ent fan-out configurations.According to this
scenario and settings, some test experiments
were done. The results are described in this
section.

Dissemination Time
of a Notification

The first evaluation checked how long one
presence notification takes to reach all present
nodes in a group. Here we disregarded the
propagation time of the notification from one
node to the next one. We built a scenario with
different numbers of nodes in the group to
evaluate the service.

The experiment runs as follows: one node,
the seed, sends just one single notification
message using epidemic multicast and then
we collect, through generated logs, the time

this message arrives in all other nodes of
the group.

The NeEM parameters were adjusted to a
fan-out of 5 and time-to-live of 6. These pa-
rameters mean that each node retransmits the
message to 5 other nodes and the message will
be ignored after 6 rounds.

To send just one message from the seed
node (the originator), we adjust the parameter
corresponding to the notification interval to al-
low the seed to send only one message during
the experiment. The seed node does not send
two or more messages during the experiment
because we set a large time interval. This guar-
antees that we can follow the propagation of
this message.

The experiment shows, as expected, that
the dissemination time of presence informa-
tion does not grow linearly with the increas-
ing number of network nodes. This is because
PingCloud uses an epidemic dissemination
protocol.

At the first moment, when just a few nodes
have the message, there is little redundancy
of retransmission, and so the transmission to
f nodes is complete, or practically complete.
Later, when a large number of nodes have re-
ceived the notification, there is much useless
retransmission; almost all messages that are
received are duplicate ones.

In the last hops the retransmission is less
efficient, because few of the messages that the
nodes received are actually new, which means
not already received in those nodes. The re-
dundant messages are silently dropped.

The redundancy is an important character-
istic in epidemic protocols, because the proto-
col’s fault tolerance relies on it. Redundancy
enhances the resilience against node crashes,
link crashes and loss of messages. Redun-
dancy also allows for very fast propagation
and scalability.

To follow the dissemination of a message
in the scenario just described, we performed
simulations for 15, 25 and 40 nodes forming
the group. With 40 nodes we reach the limit
using only one computer. With more than 40
nodes, the result might be affected by the large
number of simultaneous threads.

Figure 8 shows an example where it is pos-
sible to visualize the fast dissemination of a
notification in its initial phase and its loss of
performance over time.

Figure 8 displays the time to reach all
nodes in a group using an epidemic multi-
cast protocol with fan-out of 5 and TTL of 6.

Figure 6. First evaluation.

Figure 7. Second evaluation.

56 Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

The number of nodes in the group varies from
15 to 24 and to 40.

Dissemination time
for different fan-outs

In this evaluation experiment we run two
simulations, both with 30 nodes belonging to
the group. The first simulation uses a fan-out
of 3, and the second a fan-out of 7.

For this evaluation, we use a fault injection
tool called FIRMAMENT to set 100 ms delay
in all transmitted packets. Thus, with fixed
delays it is possible to analyze each round of
message transmission. The introduced delays
permit emulating a scenario that is closer to
real network environments, thus compensat-
ing for the fact that the experiments are run-
ning in a single computer.

First the node which wishes to transmit a
notification, the seed, sends the notification to
f (fan-out) other nodes in the group. As none
of these nodes has received the notification
before, all transmissions are effective, which
means it transports a new notification, not a
duplicate one.

In a second round, each one of the f nodes
which received the message will retransmit it
to f other nodes. Some of the destination nodes
in this round may have received the message
before, so this message can be potentially re-
dundant. In the following rounds, this can
happen again, with the difference that the
probability of receiving a redundant message
grows in each round.

Now, analyzing the simulation to fan-out 3,
it is possible to observe in the first round that 3
notifications are going to be sent. In the second

round, are going to be there will be 9 notifica-
tions, where there is a probability that some
messages are redundant. In the third round, 3
times the number of nodes which received the
message in the previous round will be trans-
mitted minus those that receive redundant
message, since these nodes simply discard the
message. Thus, it is important to observe that
if in a round all retransmitted messages are re-
dundant, all will be dropped and the propaga-
tion will stop. None of the nodes retransmits
a message it has already retransmitted before.

The experiment for a fan-out of 7 is very
similar to the last experiment that uses a fan-
out of 3. But now each node must retransmit
the message to 7 other nodes. It is easy to see
that the dissemination is faster and less rounds
will be needed for the notification message
that was originated in the seed to reach all the
nodes in the group.

According to this, in Figure 9 it is possible
to observe the different rounds of retransmis-
sion, separated by 100ms of interval. We can
see also that for larger fan-outs less rounds of
retransmission are needed to reach all nodes.

It is important to emphasize that the fault
injector was used in this scenario just to com-
pensate for the fact that the evaluation runs in a
single computer and this is not representative of
a real network environment. The delay was in-
jected to emulate the network’s natural delays,
and it cannot be considered as a fault emulation.

Related work

We describe some examples of presence
services. As we are going to see, the services
described here follow a centralized approach

Figure 8. Time to reach all nodes in ms

57Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

except for the last one (Celesti et al. 2010), where
distributed agents collect presence information
and publish them in a central location.

Comparing these services with PingCloud,
the main point to emphasize is that our service
has no single point of failure. This problem is
typical of centralized approaches. PingCloud
can also scale better than any centralized ap-
proach. The reliance and scalability reached
by our proposal came with a penalty: the
flooding of notification messages can affect the
traffic load of the network.

Extensible Message
and Presence Protocol

XMPP, Extensible Message and Presence
Protocol (Saint-Andre, 2004, 2011) is an open-
source protocol for instant messaging, presence
information and contact list maintenance. Its
architecture follows a centralized approach.
The presence list resides on servers which me-
diate all the communication between the users.
All the nodes that belong to the group are ad-
dressed through a single identifier. Any two
users wishing to notify their presence and com-
municate with each other must, each one, con-
nect to the XMPP server. These servers send the
presence information and exchange messages
between these two users. The communication
is done exchanging messages in XML format.

Simple

SIMPLE (Niemi, 2004) is a presence serv-
ice protocol and instant messaging suite based
on SIP protocol (Session Initiation Protocol)

(Johnston, 2009), which is a protocol for creating,
modifying, and terminating multimedia ses-
sions like, for example, voice application over
IP. SIMPLE adds three methods to SIP to ex-
change messages and presence information
between users:

• Subscribe: method invoked when a node
wishes to receive presence information.

• Notify: method used to send presence in-
formation

• Message: method invoked to send mes-
sages.

The communication between two users can
be done by P2P, since the nodes know each
other in advance. If the users do not know each
other, they use a central server which holds the
presence list and the addresses of the users.

Wireless Village
Wireless Village – WV (OMA, 2001) was

conceived by OMA – Open Mobile Alliance.
It was developed to provide a set of univer-
sal specifications for mobile instant messaging
and presence services. It uses the client-server
architecture. The clients are any mobile devic-
es, and the server is the Wireless Village Serv-
er. The WV server is responsible for managing
the presence information as well as other fea-
tures, like exchanging messages, group man-
agement, group membership and file sharing.

CCFM Discovery Agent

Celesti et al. (2010) propose an architecture
for cross cloud federation management in a
federate environment composed of agents, and

Figure 9. Multicast time with different fan-outs.

58 Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

one of them is a discovery agent. It manages
the discovery process among all the available
clouds. The purpose here is not to find avail-
able nodes but the presence of foreign clouds.

The discovery process is implemented in a
distributed way using the publisher-subscriber
approach. An application publishes its own set
of information at a centralized location from
which only a set of authorized (subscribed)
entities are able to retrieve it. Even though
such location is logically centralized, it can be
implemented in a distributed way, and it also
reaches resilience against central node crash.

Conclusions

We can conclude that it is advantageous
to use a distributed approach associated with
epidemic multicast to build a presence service.
The results show that this approach allows for
good performance and better scalability and
resilience against network faults in compari-
son to traditional centralized approaches. The
results also demonstrate that the NeEM pro-
tocol used to support the epidemic multicast
was an opportune choice for the dissemination
of presence notification.

It is also possible to observe that config-
uring appropriately the protocol parameters
is fundamental for its correct operation. The
parameters can be modified by an application
according to its needs. For example, in a net-
work with a large percentage of message loss,
the application can increase the redundancy
by increasing the fan-out, thus guaranteeing a
higher probability of message delivery.

Some issues are not explored in this first
version of the presence service, including
some security mechanism to join the group.
Other important point to be investigated is
improving the application so that it manages
the NeEM parameters at runtime. Parameters
as fan-out and time-to-live are related to the
number of nodes present in the group and,
thus, must be managed by the application.

For future works, we are planning tests
with a larger number of computers to simu-
late overlay groups in larger scales. We also
want to complement the tests with commu-
nication fault injection, dropping messages,
delaying some messages, crashing nodes and
links. Testing in this way, besides the service
efficiency, we can also extract better perform-
ance measures under faults, fault coverage
and service availability.

Acknowledgements

This work has been funded by the JitCloud
project with support of the RNP.

References

ALVISI, L.; DOUMEN, J.; GUERRAOUI, R.;
KOLDEHOFE, B.; LI, H.; VAN RENESSE, R.;
TREDAN, G. 2007. How Robust Are Gossip-
based Communication Protocols? ACM SIGOPS
Operating Systems Review, 41(5):14-18.

 http://dx.doi.org/10.1145/1317379.1317383
BIRMAN, K.P. 2003. The Surprising Power of Epi-

demic Communication. In: A. SCHIPER (ed.),
Future Directions in Distributed Computing. LNCS
2584. Berlin, Springer-Verlag, p. 97-102.

 http://dx.doi.org/10.1145/1556154.1556172
CARVALHO, N.; PEREIRA, J.; OLIVEIRA, R.; RO-

DRIGUES, L. 2007. Emergent Structure in Un-
structured Epidemic Multicast. In: ANNUAL
IEEE/IFIP INT. CONFERENCE ON DEPEND-
ABLE SYSTEMS AND NETWORKS, 37, Edin-
burg, 2007. Proceedings... Los Alamitos, p. 481-
490. http://dx.doi.org/10.1109/DSN.2007.40

CELESTI, A.; TUSA, F.; VILLARI, M.; PULIAFITO,
A. 2010. How to Enhance Cloud Architectures
to Enable Cross-Federation. In: IEEE INTERNA-
TIONAL CONFERENCE ON CLOUD COM-
PUTING (CLOUD), 3, Miami, 2010. Proceed-
ings… Los Alamitos, p. 337-345.

 http://dx.doi.org/10.1109/CLOUD.2010.46
DAY, M.S.; AGGARWAL, G.; MOHR, J.; VINCENT,

2000. Instant Messaging/presence Protocol Re-
quirements. RFC, 2779.

DREBES, R.; JACQUES-SILVA, G.; TRINDADE, J.
da; WEBER, T. 2006. A Kernel-based Commu-
nication Fault Injector for Dependability Tes-
ting of Distributed Systems. In: S. UR; E. BIN;
Y. WOLFSTHAL (ed.), Hardware and Software,
Verification and Testing. Lecture Notes in Computer
Science 387. Berlin, Springer-Verlag, p. 177-190.
http://dx.doi.org/10.1007/11678779_13

EUGSTER, P.T.; GUERRAOUI, R.; KERMARREC,
A.-M.; MASSOULIE, L. 2004. Epidemic Infor-
mation Dissemination in Distributed Systems.
Computer, 37(5):60-67.

 http://dx.doi.org/10.1109/MC.2004.1297243
FREY, D.; GUERRAOUI, R.; KERMARREC, A.;

KOLDEHOFE, B.; MOGENSEN, M.; MONOD,
M.; QUÉMA, V. 2009. Heterogeneous Gos-
sip. In: ACM/IFIP/USENIX INTERNATIONAL
CONFERENCE ON MIDDLEWARE, 10, Urba-
na Champaign, Illinois, 2009. Proceedings… New
York, Springer-Verlag. Inc., 3:1-3:20.

 http://dx.doi.org/10.1007/978-3-642-10445-9_3
JOHNSTON, A.B. 2009. SIP: Understanding the Ses-

sion Initiation Protocol. London, Artech House
Publishers, 395 p.

59Journal of Applied Computing Research, vol. 2, n. 1, p. 50-59, Jan/Jun 2012

Wilges, Weber, Cechin and Moraes | A Distributed Presence Service over Epidemic Multicast

LEITÃO, J.; PEREIRA, J.; RODRIGUES, L. 2007.
HyParView: A Membership Protocol for Reli-
able Gossip-Based Broadcast. In: ANNUAL
IEEE/IFIP INTERNATIONAL CONFERENCE
ON DEPENDABLE SYSTEMS AND NET-
WORKS, 37, Edinburg, UK, 2007. Proceedings…
Los Alamitos, p. 419-429.

 http://dx.doi.org/10.1109/DSN.2007.56
LIM, J.; LEE, J; CHIN, S.; YU, H. 2011. Group-Based

Gossip Multicast Protocol for Efficient and Fault
Tolerant Message Dissemination in Clouds. In:
J. RIEKKI; M. YLIANTTILA; M. GUO (ed.), Ad-
vances in Grid and Pervasive Computing. Lecture
Notes in Computer Science. Berlin/Heidelberg,
Springer, 6646:13-22.

 http://dx.doi.org/10.1007/978-3-642-20754-9_3
NIEMI, A. 2004. Session Initiation Protocol (SIP)

Extension for Event State Publication. RFC 3903.
OMA 2001. The Wireless Village Initiative: System

Architecture Model, 2001-2002. Available at:
http://www.openmobilealliance.org/tech/af-
filiates/wv/wv_architecture_v1.0.pdf Access on:
01/10/2012

PEREIRA, J.; RODRIGUES, L.; MONTEIRO, M.J.;
OLIVEIRA, R.; KERMARREC, A.-M. 2003.
NEEM: Network-friendly Epidemic Multicast.
In: INTERNATIONAL SYMPOSIUM ON RE-
LIABLE DISTRIBUTED SYSTEMS, 22, Flor-
ence, 2003. Proceedings… Los Alamitos, p. 15-24.
http://dx.doi.org/10.1109/RELDIS.2003.1238051

PEREIRA, J.; RODRIGUES, L.; PINTO, A.; OLIVEI-
RA, R. 2004. Low Latency Probabilistic Broad-
cast in Wide Area Networks. In: IEEE INTER-
NATIONAL SYMPOSIUM ON RELIABLE
DISTRIBUTED SYSTEMS, 23, Florianópolis,
2004. Proceedings… Washington, DC, p. 299-308.
http://dx.doi.org/10.1109/RELDIS.2004.1353030

ROSENBERG, J.; DAY, M. 2000. A Model for Pres-
ence and Instant Messaging. RFC 2778.

SAINT-ANDRE, P. 2004. Mapping the Extensible
Messaging and Presence Protocol (XMPP) to
Common Presence and Instant Messaging
(CPIM). Available at: http://tools.ietf.org/html/
rfc3922. Access on: 01/10/2012.

SAINT-ANDRE, P. 2011. Extensible Messaging and
Presence Protocol (XMPP): Core. Available at:
http://tools.ietf.org/html/rfc6120.txt. Access on:
01/10/2012.

SIQUEIRA, T.; FISS, B.; WEBER, R.; CECHIN, S.;
WEBER, T. 2009. Applying FIRMAMENT to
Test the SCTP Communication Protocol Under
Network Faults. In: LATIN AMERICAN TEST
WORKSHOP, 10, Búzios, 2009. Proceedings…
Los Alamitos, p. 1-6.

 http://dx.doi.org/10.1109/LATW.2009.4813793.
WILGES, P.; LOVISON, H.D.C.; CECHIN, S.L.;

WEBER, T.S.; MORAES, R.L.O. 2012. Serviço de
Presença sobre uma Estrutura Gossip em Cloud.
In: M.L. PILLA (ed.), Escola Regional de Redes de
Computadores. Pelotas, SBC, p. 61-64.

WUHIB, F.; STADLER, R.; SPREITZER, M. 2012.
A Gossip Protocol for Dynamic Resource Man-
agement in Large Cloud Environments. IEEE
Transactions on Network and Service Management,
9(2):213-225.

 http://dx.doi.org/10.1109/TNSM.2012.031512.110176

Submitted on October 15, 2012.
Accepted on December 11, 2012.

