
Journal of Applied Computing Research, 2(1):11-21
January-June 2012
© 2012 by Unisinos - doi: 10.4013/jacr.2012.21.02

CraftContext: A Test Platform
for Context-Aware Applications

Caroline Rizzi Raymundo, Patrícia Dockhorn Costa
Universidade Federal do Espírito Santo. Av. Fernando Ferrari, 514, Goiabeiras, 29075-910,Vitó ria, ES, Brazil
carol.rizziray@gmail.com, pdcosta@inf.ufes.br

Abstract. This paper presents a tool, called CraftContext, capable of leveraging the test phase of context-
aware application development. CraftContext offers a 3D simulation environment, which is rich in details
and resources, and is accessed by a robust and portable CORBA-based API. CraftContext excels most current
existing testing tools due to its adaptability to different domains.

Key words: context-awareness, test tool, CraftContext, JacORB, CORBA, minecraft.

Introduction

The increasing popularity of smartphones
boosted the search for Context-Aware Ap-
plication development techniques (e.g., Dey,
2001; Costa, 2007). Such applications (called
here CA applications) are capable of autono-
mously providing services and information
based on the user’s context. A simple example
would be an application that autonomously
controls the air conditioner of a house based
on the user’s location (e.g., if the user is ap-
proaching the home, the air conditioner is au-
tomatically turned on).

In order to gather context information,
these applications usually make use of sen-
sors, such as the ones found on modern mo-
biles (GPS, accelerometer, luminosity, etc.). A
frequent problem faced by CA application de-
velopers is the lack of a robust and thorough
simulation environment. Shah et al. (2010)
discuss several points about the challenges of
testing context-aware applications, especially
with respect to the hard task of using physical
context sources (e.g., sensors) in a controlled
and reproducible way. For instance, consider
an application that monitors the velocity of a
vehicle and the environment around it. The
idea is detecting risky situations, such as the
ones in which cars are approaching sharp
curves or paths of intense pedestrian traffic.

When the application detects that the vehi-
cle is at a high speed in a risky situation, an
alert is sent to the driver. In order to test such
an application by means of real sensors, the
test engineer needs to place himself or herself
in that risky situation. A way of overcoming
such problem is the virtual simulation of the
user’s context.

Context simulation tools, such as those
presented in Bylund and Espinoza (2002),
Broens and van Halteren (2006) and Martin
and Nurmi (2006), aim at generating context
information data and performing the role
of sensors, providing CA applications with
the generated data. These tools usually pro-
vide an environment that simulates the real
world. They depend on the existence of virtual
agents to generate context, based on their ac-
tions in the virtual world. Since these simula-
tion tools are usually of general purpose, they
tend to provide support for common sensors
only (such as position, velocity, temperature,
luminosity, etc.), which are easily found in
smartphones and other mobile devices. This
limitation is noticeable and problematic when
the CA application requires context informa-
tion of a specific domain, which goes beyond
the resources of most common sensors. Some
examples of unusual sensors are the ones that
detect vital signs (heart beats, respiratory rate,
etc.), weight, depressurization, etc.

12 Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

This paper proposes a context simulation
tool that offers a large set of simulated sensors.
This tool, called CraftContext, uses the game
called Minecraft (Mojang, 2012a) to simulate
the real world and generate context informa-
tion data. Due to the wide variety of events
and resources offered by Minecraft, several real
world situations and scenarios can be simu-
lated or mapped for particular features of the
game. For example, a sensor inside a vending
machine, which aims at detecting when the ma-
chine is empty (an example of a very specific
domain), could be simulated by a game com-
ponent called “chest”. When there are no items
left, the chest triggers an “empty” event notifi-
cation. The main idea is that CA application de-
velopers can creatively use the extensive range
of possibilities in the game to simulate any sen-
sors they may need in the test phase.

CraftContext also allows callback functions
that can be invoked to modify Minecraft’s
world, retrieve information or send messages
to players. The commands and requests sent
by the players can also be listened to by CA
applications.

In the next section we present related work,
which critically discusses solutions that are
similar to the one described here. Then we
present the proposed tool, CraftContext, as
well as the Minecraft game. In the fourth sec-
tion we discuss a test scenario implementation
in order to demonstrate the tool in use. Finally,
the final section presents concluding remarks.

Related Work

As recognized by related work (e.g.,
Dey et al., 2001; Martin and Nurmi, 2006;
Broens and van Halteren, 2006; Bylund and
Espinoza, 2002), testing CA application is
a challenging task. Sama et al. (2008) point
out intrinsic features of CA applications
that contribute to increasing the complex-
ity of the validation phase. According to
Sama et al. (2008) context information may
be classified as physical context (real world
context), sensed context (data coming from
sensors), inferred context (premises inferred
from sensory context) and presumed context
(conclusion based on the inferred data). Any
glitch in the data flow between the various
context levels may cause transient inconsist-
ency in the system, leading to responses that
are in disagreement with reality. In order to
avoid this and other possible complications
passing unnoticed through the validation

step, it is important to use a robust environ-
ment that supports adequate evaluation.

As mentioned previously, using real context
sources (i.e., sensor’s data) to perform tests is
hard. This difficulty occurs mainly due to the
lack of control over real world events. Such
events usually generate ever-changing data,
reducing the chances of accurately reproduc-
ing a specific test scenario. In addition, other
issues that may impose challenges when using
real devices are (i) financial issues (the purchase
of expensive devices or in large quantities), (ii)
dealing with risky situations (when the test
engineer needs to place himself or herself in a
dangerous situation), (iii) logistics issues (when
it is necessary to travel long distances, to wait
for long periods of time, etc.).

Dey et al. (2001) propose a toolkit that
works like an intermediary between sensors
and context-aware applications. This toolkit
consists of context widgets, which are soft-
ware components structured in a distributed
architecture. Each component communicates
with a specific sensor, aiming at hiding details
about context information acquisition from the
CA application. The toolkit proposed in Dey et
al. (2001) eases the communication complexity
between application and sensor. However, by
using real sensors in the test phase, this tool
does not solve the problem of the lack of a con-
trolled environment where the test might be
easily reproduced.

In order to overcome this problem, other
authors (e.g., Martin and Nurmi, 2006; Broens
and van Halteren, 2006; Bylund and Espinoza,
2002) have proposed using virtual simulation
of sensors to generate context information data.
In this way, context information data can be
obtained by context simulating applications,
which can be configured to provide informa-
tion according to the test engineer’s interests
and needs. Therefore, physical and/or financial
issues would no longer be a limitation.

Martin and Nurmi (2006) propose a tool for
simulating a semi-real environment. This envi-
ronment is built based on models that follow a
well-defined pattern. In order to use this tool,
the developer needs to provide an agents’ mod-
el, a world model and a context model, which
must be previously defined. In this approach,
both the agents’ model and the world’s mod-
els need to be preprogrammed. However, there
is no specific tool for this end, which delegates
this hard task to the test engineer.

The tool proposed by Broens and van Hal-
teren (2006), called SimuContext, only requires

13Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

the pre-configuration of context values and
their related entities. Differently from the ap-
proach proposed by Martin and Nurmi (2006),
SimuContext offers an appropriate tool for
pre-configuring context values. The context
possibilities are vast, since SimuContext does
not restrict kinds or forms of context, leaving
the programmer in charge. However, Simu-
Context does not support the simulation of a
virtual world, which reduces the tool to a pre-
programmed context data generator.

A tool similar to the one proposed here
has been presented in Bylund and Espinoza
(2002). This tool, called QuakeSim, is based on
the Quake III Arena game to simulate the real
world. The players may establish connections
to the same server and interact with each oth-
er, producing context information data. This
data is gathered by QuakeSim, which sends
them to the client CA application, performing
the role of sensors. The richness of the game,
however, is narrowly explored, so only com-
mon sensors (position, temperature, velocity,
etc.) are simulated by the tool.

CraftContext differs from the other tools
presented in this section mainly due to the
richness of the game it has been built upon.
In addition, since CraftContext is a first per-
son game style, it allows test engineers to put
themselves in the user’s view, giving a real feel
to the simulation. Additionally, CraftContext
allows CA applications to be implemented in
almost any programming language and plat-
form, as presented in the next section.

CraftContext

We have developed CraftContext using the
Minecraft game to simulate the world and
generate context information. In this section
we discuss our definition of context, the main
features of Minecraft and the architectural de-
sign of CraftContext.

Context

CraftContext works as a context source, i.e.,
it is capable of providing context. In the litera-
ture, context appears under many definitions,
and Dey (2001) presents the most cited one.
According to Dey, “context is any information
that can be used to characterize the situation of
an entity. An entity is a person, place, or object
that is considered relevant to the interaction
between a user and an application, including
the user and applications themselves”.

CraftContext follows a similar definition of
context, in which the entities’ roles described
by Dey are performed by the players, envi-
ronment, objects and all the creatures inside
Minecraft’s world. Therefore, in CraftContext,
context is any event of interest around the play-
ers (including their actions), characterizing
their current situation.

The Minecraft Game

Minecraft (Mojang, 2012a) is a game
played in first person, developed by Mojang
AB (Mojang, 2012b). It simulates a 3D virtual
world composed basically by blocks, in which
nature elements are represented by cubes of
one square meter, creating landscapes that
vaguely resemble the LEGO toy. These blocks
may be removed and replaced almost any-
where, and can also be used as raw material
for constructions.

The game’s sandbox style provides the
players with freedom of action and move-
ment inside the world, with no obligation of
reaching a specific goal. Minecraft also allows
interaction between several players inside the
same environment (multiplayer game), en-
riching the variety of context possibilities. The
game has a vast territory, equivalent to eight
times the length of the earth surface, and of-
fers many ecosystems, such as jungles, deserts,
rivers and seas.

We have chosen Minecraft as the base of
CraftContext mainly due to its large variety
of environments, resources and possibilities,
many of which faithfully represent the real
world. Furthermore, we have also taken into
account that Minecraft offers total freedom to
the players’ actions and movements, which
is a feature that is hardly found in other Role
Playing Games. Finally, a decisive factor for
choosing Minecraft is that it makes it easier to
develop custom extensions to the game.

The Architctural Design
of CraftContext

We have developed CraftContext as an ex-
tension plugin of Minecraft, which is capa-
ble of interacting with Minecraft’s world to
either change it or listen to its events. Since
the official Minecraft server does not sup-
port plugin creation, we have used the Bukkit
server (Bukkit Team, 2012), which is the most
famous modified version of Minecraft’s origi-
nal server.

14 Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

CraftContext has been implemented in Java
and all the remote communication between cli-
ent applications and the plugin is performed
with JacORB (JacORb, 2012), which is an open-
source Java implementation of CORBA (Com-
mon Object Request Broker Architecture)
(OMG, 2012). CORBA is a standard for develop-
ing heterogeneous distributed systems and pro-
vides, among other services, remote communi-
cation transparency, allowing the programmer
to perform remote calls as if they were local.
CORBA also offers many levels of resource in-
dependence, enabling client applications to be
developed in almost any operating system and
programming language. This feature was fun-
damental for choosing CORBA as opposed to
other potential technologies, such as Java RMI,
which would require the client applications to
be implemented in Java. In addition, the remote
call services provided by Java RMI are limited
if compared to CORBA. CORBA offers a robust
set of communication options through event
channels, which have been fundamental for im-
plementing the proposed tool.

Three kinds of interaction models can be
established between a client application and
CraftContext (all of them implemented with
JacORB): message passing, request-response and
publish-subscribe (Costa, 2007). Figure 1 depicts

in detail the proposed architecture. The plugin
CraftContext works as an internal module for
the Bukkit server. The player needs a Minecraft
client and an access account to connect to the
server. As mentioned earlier, it is possible to
simultaneously connect several players to the
same server, in which the players can share the
same environment and possibly interact with
each other. The plugin catches the occurrences
inside the game and publishes them in specific
event channels, according to types of events
(like in a publish-subscribe model). These chan-
nels work as event mediators, hiding from the
client the server’s location and availability.
Similarly, the server is unaware of how many
subscribed clients there are and who they are.

The CA application is prepared to receive
context information data from real sensors,
but for simulation purposes they are provided
by the CraftContext plugin. In order to solve
this problem and to encapsulate the simula-
tion from the real application, an adaptor
should be implemented. This adaptor works
as an interface between the CraftContext plugin
and the client application, which allows the
application’s code to remain unchanged when
tested with CraftContext.

The adaptor has to subscribe itself to the
event channels in order to receive events of in-

Figure 1. The CraftContext architecture.

15Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

terest. The CraftContext plugin uses the event
channels to provide context events, which are
events of interest in the virtual world, as well
as to provide events that represent requests
from the players. Besides the event channel, the
client application (or its adaptors) may still re-
quest services directly from the plugin, such as
modifications to the world, information about
the world’s current state (like in a request-re-
sponse model) and sending messages directly to
the players (like in a message passing model).

CraftContext is responsible for starting
event channels and registering event listeners
on the Bukkit server. After completing these
tasks, CraftContext is ready to send event no-
tifications to applications’ adaptors. The se-
quence diagram in Figure 2 shows an example
of event notification message flow.

At first, the adaptor should subscribe to
the event channels of interest. Event subscrip-
tion can be performed at any moment while
the application is running. After event sub-
scription, the application is able to receive no-
tifications from the Bukkit server (by means
of the event channel).

On the other side, the Bukkit server is trig-
gering events asynchronously. These events
are sent by the server to the registered listen-
ers. The listeners receive these notifications
and publish them in the appropriate event
channels. Finally, the channels push the event
notification to the subscribed adaptors, using
their callback functions.

In the next section we discuss a case study
in which a context-aware application is imple-
mented and tested with the CraftContext plugin.

Case Study

In this section we present a test scenario in
which a CA application and its adaptor are im-
plemented. Later, we discuss the test results.

Scenario

Consider a CA application for smartphones
capable of communicating with a monitoring
device (working as a sensor) via Bluetooth.
This monitoring device continuously gathers a
patient’s glucose values and sends them to the
CA application.

 Suppose that at a certain point in time
the sensor detected a glucose rate lower than
the normal value, which characterizes a mild
episode of hypoglycemia. In this case, the
application should alert the patient with a
suggestion to revert the situation. The glu-
cose rate may keep falling, worsening the
hypoglycemia level to a moderate episode.
In this case, the application should locate
the patient (using GPS location information)
and find the nearest hospital at that moment.
A message is then sent to the patient, report-
ing the current situation and the address of
the nearest hospital.

If the patient’s glucose rate reaches criti-
cal levels (severe episode of hypoglycemia),
which may characterize risk of fainting, the
application should search for the patient’s
nearest friends and send them a message. This
message would inform the friends about the
patient’s condition and current location. The
application should notify the patient when he

Figure 2. Sequence diagram of an event notification example.

16 Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

or she becomes stable, i.e., when the glucose
rate returns to normal.

Figure 3 depicts a screenshot of such a sce-
nario in the game. In this picture we can ob-
serve a player, playing the role of a patient, in
front of a building, representing a hospital.

The Context-Aware Application

We have implemented the proposed CA
application using a rule-based approach. For
this end, we have used JBoss Drools (JBoss
Community, 2012), which provides a Java
rule-based programming environment. In ad-
dition to its powerful rule engine, Drools also
provides its own language for rule specifica-
tion, called DRL (Drools Rule Language).

At the configuration phase, the CA ap-
plication requires information to register the
patient to be monitored. The user of the ap-
plication can use additional commands at any
moment during the application’s life cycle to
register friends who could help the patient in
an emergency situation. With this informa-
tion, the application is capable of monitoring
the patient.

A glucose sensor provides glucose rate in-
formation for the CA application, at fixed time
intervals. Upon receiving information from the
sensor, the application inserts these data into
the working memory of Drools’ rule engine.
The inserted information data (also known as
facts) may trigger rules, leading the system to
take conclusions or actions. Drools’ rules are
split in four portions: (i) the rule’s name, (ii)
optional attributes of the rule, (iii) the condi-
tions for activation and (iv) inferences and ac-
tions to be taken if the conditions are met.

Figure 4 shows one of the rules we have im-
plemented in the application. This rule defines
that an event called MildHypoglycemia (re-
sponsible for flagging the patient’s situation)

should be inserted into the working memory
in case the condition is met. The condition is
a conjunction between two sub-conditions, in
which the first checks whether the patient is
having a mild hypoglycaemia episode and the
second checks for the nonexistence of an event
called MildHypoglycemia.

The Adaptor

The CA application expects data provided
by sensors, i.e., the glucose monitor and the
GPS. Both sensors have their own APIs for
communicating with the application. In order
to use CraftContext as context source (as op-
posed to real sensors) we have to adapt its in-
formation data to a format that the application
understands. Aiming to encapsulate the com-
munication with CraftContext, we suggest de-
veloping an adaptor that (i) transforms infor-
mation data coming from CraftContext and (ii)
is also capable of handling the communication
between CraftContext and the CA application.

The simplest way to develop an adaptor
is by replacing the sensors’ API libraries with
others that have the same name, but function-
ally different. For example, imagine that the
GPS’s API provides a request-response method,
called getLocation(), to retrieve the patient’s
current position (latitude, longitude and al-
titude). So the adaptor should also define a
method called getLocation(), which provides
the same information. This information, how-
ever, is retrieved from the game, and not from
the GPS.

The information gathered from the game
has to be converted into a format understand-
able by the application. For example, the ap-
plication works with a data structure called
Location that does not exist in CraftContext. On
the other hand, the tool works with a corre-
sponding structure, called Position. The adap-
tor’s job, in this case, is to receive a Position
data structure from the game, to turn this data
into a Location data structure, which is then

Figure 3. Screenshot of the game.
Figure 4. Example of a Drools inference rule that
detects mild hypoglycemia episodes.

17Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

sent to the CA application. Figure 5 depicts
this example.

The application developer needs to distin-
guish the parts of the application that should
be adapted and the parts that remain the same.
Figure 6 depicts a screenshot of the eclipse
project tree organization of the proposed ap-
plication, which we call HypoSupervisor. The
original application uses two different librar-
ies (which are fictitious in our example): cell-
phone and sensor. The cellphone library provides
all the means to access and use the cellphone’s
services, such as GPS, messenger, maps, etc.
The sensor library provides the necessary API
to communicate with the glucose rate sensor.
The application itself has been developed in
a package called HypoSupervisor. This is the
part of the application that should be kept un-
changed.

In order to test the HypoSupervisor applica-
tion using CraftContext, we have made a copy
of the original project, which we called Hypo-
SupervisorTest. In this test project we have cre-
ated two additional libraries, which received
the same names of the libraries used by the
application: cellphone and sensor. These two
libraries are now the adaptors, i.e., internally
they are prepared to receive information data
from CraftContext, but externally they have the
same interface as the original libraries. Mean-
while, the HypoSupervisor package remains ex-
actly the same as the one in the original project.

The implementation of the adaptor’s meth-
ods has to respect all features of the origi-
nal methods. For example, the getLocation
method, depicted in Figure 5, is part of the
GPS class, which is implemented as part of
the package called gps (seen in Figure 6). The
original method provides an object called Lo-
cation and returns a GPSSignalNotFound excep-
tion if the GPS device is unable to reach the

satellite’s signal. In order to simulate the origi-
nal class’s behaviour, the adaptor’s class re-
quests the player’s position to CraftContext and
transforms the returned value into a Location
object. If the player is not logged in, the adap-
tor throws the GPSSignalNotFound exception.

Besides request-response communications,
the adaptor must also be able to manage event
notifications. Figure 7 depicts a sequence dia-
gram that exemplifies the adaptor’s role dur-
ing a severe hypoglycemia episode. In order
to receive event notifications, the application
should first subscribe an event consumer to
the event channel. The first step in Figure 7
shows the adapter transforming the sensor’s
listener into an event consumer, which is sub-
scribed to the event channel responsible for
player notifications.

Upon the occurrence of an event, the chan-
nel pushes the event notification to the adap-
tor by means of a callback. To simulate the glu-
cose rate sensor, we use the player’s starvation
measurer, which is a well-known parameter
of the Minecraft game. Thus, a starving play-
er simulates a patient in a critical situation of
hypoglycemia, while a fed player represents
a stable patient. So, if the received event no-
tification is indicating a change in the player’s
food level, the adaptor sends this information
to HypoSupervisor as a glucoseRate object. Then
the HypoSupervisor analyses the hypoglycemia
severity. If it is critical, the application has to
find the patient’s friends and warn them about
the patient’s urgent condition.

Fi gure 5. Example of a situation in which the
adaptor works in a request-response interaction.

Fi gure 6. Screenshot of the eclipse project tree
organization of the CA application.

18 Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

Then, the HypoSupervisor requests the
friends’ contact list from the adaptor, which
in turn requests CraftContex to return a list of
connected players. The returned players are
transformed into contacts and delivered to
the application. Then the HypoSupervisor cal-
culates the nearest contacts and sends them a
message about the patient’s situation.

The HypoSupervisor should also discover
the nearest hospital at that moment. So, it re-
quests the existing hospitals from the adaptor,
which performs a conversion similar to the one
previously described. The application uses the
retrieved hospitals to calculate the nearest one.
Finally, the HypoSupervisor sends a message to
the patient informing about his or her criti-

cal situation and providing the address of the
nearest hospital.

Tests

We have performed basic black-box tests,
based on functional requirements of the ap-
plication described in the section “The Con-
text-Aware Application”. These tests have
included four players, remotely connected to
the same server, among which one played the
role of the patient, two were registered in the
application as the patient’s friends and the last
one represented just a stranger to the patient.
In the simulated world, we have built three
buildings: two hospitals and a restaurant.

Figure 7. Sequence diagram of a severe hypoglycemia detection scenario.

19Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

Firstly, we tried to simulate situations
that would lead the HypoSupervisor to throw
exceptions. For instance, we have simulated
the situation in which the glucose sensor de-
vice is turned off. In that case, the application
should be able to detect the patient’s absence
and show a message on the screen asking the
patient to turn on the device. This behaviour
was successfully simulated in the game by
starting the application without logging in the
player that performs the role of patient. The
PlayerNotFound exception thrown by CraftCon-
text was then converted by the adaptor into a
command to call the application’s method that
prints out a warning message.

Another similar case happens when the ap-
plication fails to find the position of a patient’s
friend. In this situation, CraftContext should
throw a GPS SignalNotFound exception. We
have simulated that behaviour in CraftContext
by forcing a hypoglycemia episode when there
were no registered friends logged in to the
game. In such a case, the adaptor converted
the PlayerNotFound exception into a GPSSig-
nalNotFound exception.

Next, we have performed tests with all the
players logged in to the game. The first step con-
sisted of analysing whether the variations in the
player’s starvation level (which is how we have
simulated the patient’s glucose rate changes in
the game) were being correctly sensed and sent
to the application. The latter, in turn, should
send warning messages to the player, accord-
ing to his or her current hypoglycemia phase.

For this test we simply gradually changed
the level of the player’s starvation. Each star-
vation level changing event is sent to an event
channel, where the HypoSupervisor applica-
tion is subscribed to (by means of the publish-
subscribe model presented in the section “The
Architectural Design of CraftContext”). When
the application’s adaptor is notified about the
new player’s starvation level, it calculates the
analogue value in real glucose rate and inserts it
into the application’s working memory. Then,
the application’s logic kernel infers the patient’s
condition and uses the adaptor to send him a
message informing about his or her current
health situation. Depending on the severity of
the current hypoglycemia status, the applica-
tion may suggest a hospital to the patient and/
or alert a friend. The adaptor is in charge of ad-
justing those messages in order to send them to
the respective players (patient and friends).

Given the communication model described
above, we have achieved the expected behaviour.

The final test concerns the analysis of
whether the geographical position of play-
ers and buildings is being correctly sensed
and notified to the HypoSupervisor. In order
to describe those tests, we have used decision
tables, which are useful artefacts to allow visu-
alization of all possible situations of interest.

Table 1 describes the situations in which
players should receive alert messages (warn-
ing them about the patient’s severe hypoglyc-
emia condition). The criterion used here is the
distance between the player that plays the role
of a friend and the patient. Since we have al-
ready tested the application’s behaviour when
the patient and/or friends are offline, this table
considers that all players are already logged
in to the game. So, for instance, if we have
the first scenario configuration in Table 2, i.e.,
Friend 1 is closer to the patient than the others
players, Stranger is farther away than the oth-
ers players and Friend 2 is neither closer to nor
farther from the patient in relation to the oth-
ers players, then the addressee of the warning
message would be the player called Friend 1.
The last two scenario configurations in Table
1 give us an interesting analysis, which is that
even when the nearest player to the patient is
the player called Stranger, he or she does not
receive the warning message. Instead, the sec-
ond nearest player, who is a patient’s friend,
receives the message. This behaviour occurs
because Stranger is not registered in the appli-
cation as a patient’s friend, so he or she is not
able to receive messages from the application.

Table 2 shows how the application decides
which building should be suggested to the
patient in case of moderate or severe hypogly-
cemia episodes (considering their proximity to
the patient). In addition to testing geographical
position information, this test also checks wheth-
er CraftContext is correctly allowing specification
of building types. In our scenario, we have two
buildings (Hospital 1 and Hospital 2), to which
we have assigned the hospital type, and another
building (Restaurant), to which we have assigned
the restaurant type. CraftContext allows applica-
tions to search for buildings using building types
as the search parameter. Therefore, the HypoSu-
pervisor can use this functionality to simulate
the search for the hospitals which are near the
patient. Note that in the last two scenario con-
figurations in Table 2, even when the building
Restaurant is the nearest place for the patient, it
is not suggested to him or her (since it is not of
type hospital). Instead, the suggested place is the
second nearest building, which is a hospital.

20 Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

We have simulated all the scenario configu-
rations presented in both Table 1 and 2. The
application has exhibited the expected results
for all the tests we have performed. Perform-
ing these experiments took us a little over one
hour after configuring the tests’ parameters
and implementing the adaptor. It is possible
that if we had used real location and glucose
rate sensors probably we would have spent
more time to finishthe complete set of test.
Context simulation tools help to save time and
resources, since they do not require the acqui-
sition of real sensors for the testing phase.

In addition to the validation phase, tests
should also be performed during the develop-
ment phase. Such tests are often required, so
they should be simple and fast to avoid delay-
ing the application’s development. Field tests
are time-consuming, thus impracticable during
the development phase. This is another impor-
tant reason for using simulation tools such as
CraftContext when testing CA applications.

Concluding remarks

This paper has addressed the recurrent
problem of testing context-aware applications.
This problem results from the difficulty of us-
ing real sensors to gather context information
in a controlled and reproducible way, which
may lead to time-consuming and unreliable
tests. To the best of our knowledge, the solu-
tions proposed in the literature to overcome
these problems are usually limited with re-
spect to their applicability, offering support to
a limited number of CA applications.

This paper proposes a tool, called CraftCon-
text, capable of expanding the set of solvable do-
mains due to its foundation, the Minecraft game,
which is rich in detail and resource diversity.
Therefore, CraftContext is capable of providing a
large range of context information types, giving
support for specific domain applications, such as
the ones that require unusual sensors.

We have implemented a CA application
that required specific sensors, which are not
easily found in popular devices (e.g., smart-
phones and tablets), such as the glucose meas-
urer. We have successfully simulated these
sensors using CraftContext and our test sets
have been performed as if we had real sensors.

CraftContext’s current version provides
means to simulate GPS information, connec-

tion status (by notifying when the player logs
in or out) and persons’ health and starvation
status. The current version is also capable of
creating new buildings and notifying the play-
ers’ presence inside them. For the next versions,
we intend to increment the range of simulated
sensors by adding sensing related to other Mi-
necraft actions, such as opening/closing doors,
pushing rail cars, changing chests’ items, etc. In
addition, CraftContext is open source1 and can
be modified at any moment by its users in order
to meet their needs for sensor simulation.

We intend to continue improving CraftCon-
text, especially with respect to the quality of con-
text. CA applications strongly depend on the
availability and quality of sensors, which may
not be accurate, since they introduce noise,
delays and imperfections into the information
being sensed. In order to reflect such imperfec-
tions, the next versions of CraftContext should
consider the quality parameters of context in-
formation, such as precision, reliability and la-
tency (Broens and van Halteren, 2006).

Acknowledgment

Caroline Rizzi is funded by the Brazilian
Research Funding Agency CNPq under grant
number 558243/2010-0.

References

BROENS, T.; VAN HALTEREN, A. 2006. Simucon-
text: Simply simulate context. In: INTERNA-
TIONAL CONFERENCE ON AUTONOMIC
AND AUTONOMOUS SYSTEMS, 2, Los Alami-
tos, 2006. Proceedings… Los Alamitos, p. 1-6.

BUKKIT TEAM. 2012. Bukkit Forums. Available at:
http://Bukkit.org. Accessed on: 01/08/2012.

BYLUND, M.; ESPINOZA, F. 2002. Testing and de-
monstrating context-aware services with Quake
III Arena. Communications of the ACM, 45(1):46-48.
http://dx.doi.org/10.1145/502269.502294

COSTA, P.D. 2007. Architectural support for context-
aware applications: from context models to services
platforms. Enschede, Overissel. Ph.D. Thesis.
University of Twente, 306 p.

DEY, A.K. 2001. Understanding and using context.
Personal and Ubiquitous Computing, 5(1):4-7.
http://dx.doi.org/10.1007/s007790170019

DEY, A.K.; ABOWD, G.D.; SALBER, D. 2001. A con-
ceptual framework and a toolkit for supporting
the rapid prototyping of context-aware applica-
tions. Human-Computer Interaction, 16(2):97-166.
http://dx.doi.org/10.1207/S15327051HCI16234_02

1 http://github.com/carolrizzi/CraftContext

21Journal of Applied Computing Research, vol. 2, n. 1, p. 11-21, Jan/Jun 2012

Caroline Rizzi Raymundo and Patrícia Dockhorn Costa | CraftContext: A Test Platform for Context-Aware Applications

JACORB. 2012. JacORB. Available at: http://www.
jacorb.org/. Accessed on: 01/08/2012.

JBOSS COMMUNITY. 2012. Drools: Jboss Commu-
nity. Available at: http://www.jboss.org/drools/.
Accessed on: 01/08/2012.

MARTIN, M.; NURMI, P. 2006. A generic large scale
simulator fou Ubiquitous computing. In: ANNU-
AL INTERNATIONAL CONFERENCE ON MO-
BILE AND UBIQUITOUS SYSTEMS, 3, Los Ala-
mitos, 2006. Proceedings… Los Alamitos, p. 1-3.

 http://dx.doi.org/10.1109/MOBIQW.2006.361721
MOJANG. 2012a. Minecraft. Available at: http://

www.minecraft.net. Accessed on: 01/08/2012.
MOJANG. 2012b. Mojang: Creators of Minecraft.

Available at: http://www.mojang.com. Accessed
on: 01/08/2012.

OMG. 2012. OMG’s CORBA Website. Available at:
http://www.corba.org. Accessed on: 01/08/2012.

SAMA, M.; ROSENBLUM, D.S.; WANG, Z.; EL-
BAUM, S. 2008. Multi-layer faults in the ar-
chitectures of mobile, context-aware adaptive
applications: a position paper. In: INTERNA-
TIONAL WORKSHOP ON SOFTWARE AR-
CHITECTURES AND MOBILITY, 1, New York,
2008. Proceedings… New York, p. 47-49.

 http://dx.doi.org/10.1145/1370888.1370901
SHAH, S.; ILYAS, M.; MOUFTAH, H. 2010. Pervasi-

ve communications handbook. London, Taylor and
Francis, 500 p.

Submitted on August 20, 2012.
Accepted on December 11, 2012.

