
Abstract: This paper studies energy consumption in peer-to-peer protocols in the context of file distribution
among border devices and wireless sensors, which are limited in processing power and battery duration.
Gnutella, Chord, CAN, Pastry, and Tapestry protocols were compared to the client-server approach in
simulations using SimGrid and Triva, analyzing the energy cost of message exchanging. The peer-to-
peer protocols presented less consumption to distribute a file among 10 devices, and the best results were
achieved by the Chord protocol. The client-server architecture presented the worst results, as expected, due
to the high concentration of load in a single server. Processing costs of the Gnutella protocol were compared
to the client-server’s, with very similar results.

Keywords: Peer-to-peer, Ubiquitous computing, Green computing.

Journal of Applied Computing Research, 1(2):104-110
July-December 2011
© 2011 by Unisinos - doi: 10.4013/jacr.2011.12.05

Energy Consumption in Peer-to-Peer Protocols
for Ubiquitous Devices

Lucas D. Fonseca, Cicero A. S. Camargo, Mauricio L. Pilla, Gerson Geraldo H. Cavalheiro
Universidade Federal de Pelotas, Campus Universitário, s/n, Cx. P. 354, 96010-900, Pelotas, RS, Brasil.
ldfonseca@gmail.com, cadscamargo@inf.ufpel.edu.br, pilla@inf.ufpel.edu.br, gerson.cavalheiro@inf.ufpel.edu.br

Introduction

The base of pervasive computing is the in-
tegration among sensors or embedded systems
and the user’s environment. These devices suf-
fer from severe resource restraints in terms of
processing power, storage space, and battery ca-
pacity. Even though there is a natural evolution
of technology, it is believed that mobile devices
and sensors will remain restrained in compari-
son to other devices connected to fixed network
and power structures (Satyanarayanan, 2001).
Therefore, the use of these resources must be op-
timized to keep functionality and maximize per-
formance while reducing power consumption.
One way to help with these objectives is to better
distribute the network load among the nodes.

In pervasive environments, the client-
server approach may produce unsatisfactory
results due to the centralization and, hence,
overcharge server nodes, as well as underuse
client nodes. This can become an even larger
issue when the so-called server nodes are not
directly attached to the power grid. The peer-
to-peer approach is an alternative where nodes
may both generate and fulfill requests.

In this paper, we evaluated the client-server
and peer-to-peer approaches in the application

level for the distribution of files in a scenario
with uniform nodes, with the main metric being
energy consumption. Gnutella, Chord, CAN,
Pastry, and Tapestry protocols were compared
using SimGrid, Triva, and Avrora tools. The Ti-
nyOS operating system was used to evaluate
computational costs of each one of the protocols.

For the simulated scenarios, Chord present-
ed the smallest energy consumption, due to its
advantage when forwarding file requisitions.
CAN and Chord presented similar results, but
Chord presented slightly better results due to
storing more routing information, which may
reduce its application for some embedded de-
vices. Tapestry presented the most uniform
energy consumption among nodes. The client-
server presented the worst results as expected,
due to the concentration of load in a single
server node. However, in environments where
servers are not severely restricted in terms of
power, this disadvantage is not important.

This paper is divided as follows. In Section
2, the main differences between the chosen
protocols are presented. Then, tools are intro-
duced in Section 3. The simulation workflow
is detailed in Section 4. After that, Section 5
discusses simulation results. Finally, Section
6 presents the final remarks and future work.

Journal of Applied Computing Research, vol. 1, n. 2, p. 104-110, Jul/Dec 2011 105

Fonseca, Camargo, Pilla and Cavalheiro | Energy Consumption in Peer-to-Peer Protocols for Ubiquitous Devices

Related Work

Gnutella (Ripeanu, 2001) defines an archi-
tecture where each node sends a message to
all neighbors when searching for a resource.
The neighbors also forward the message to
all its own neighbors, except the one that
originally sent it the message. The search
for a resource (and the message forward-
ing) is finished when the resource is found
or when the request is forwarded through a
given number of nodes, thus avoiding an infi-
nite search. This flooding protocol requires a
large processing power and bandwidth, and
it does not guarantee access to a resource. To
solve this limitation, protocols of structured
architecture have been developed, where the
network organization is built using a deter-
ministic procedure. The most widely used
way to address these issues is to organize re-
sources in distributed hash tables.

In systems using Distributed Hash Tables
(DHTs), nodes and resources are assigned a
key, usually calculated using a consistent hash
function (Silva et al., 2005). The most widely
known protocols based in DHT are Chord,
CAN, Pastry, and Tapestry (now Chimera).
For all the cited protocols, the discovery proc-
ess of a new node is external to the protocol.

Chord (Stoica et al., 2003) maps each node
using an m bit key, hence allowing a maximum
number of 2m nodes in the network. These
nodes are ordered by increasing the number
of identifier in a ring. Each node knows its
succeeding neighbor. Resources are also iden-
tified and stored in nodes, accordingly.

Figure 1 presents a Chord ring with five
nodes (circles) and three resources (rectan-
gles). As the resources are allocated to the
nodes with succeeding identifiers in the ring,
resource #1 is kept by node #3, resource #4 is
stored in node #5, and so on. Besides its own
succeeding node, a given node may know the
location of log n other nodes to reduce com-
munication costs.

The CAN protocol (Ratsanamy et al., 2001)
defines identifiers as points in a virtual Car-
tesian space with d dimensions. Each node is
responsible for an area defined accordingly
to its location. Figure 2 presents a [0,2]x[0,2]
2D space with seven nodes and five resources.
Nodes are considered neighbors if they have
common sides and routing is implemented
through a greedy strategy where a message
is sent to the node nearest to destiny in the
virtual space.

The Pastry protocol (Rowstron and Dun-
schel, 2001) organizes nodes and resources in
a virtual circular space ordered by identifiers,
based on the algorithm presented by (Plax-
ton et al., 1997). Identifiers have 128 bits. Each
node has three routing tables. The first one
keeps a set of leaves with the nearest nodes.
The second table has lines and 2b columns, N
being the number of nodes in the network.
Each line corresponds to the node whose pre-
fix has n bits equal to the current node. The
last table keeps the nearest nodes according to
some metric, such as latency. Figure 3 shows
an example of a table for a Pastry node.

The Tapestry protocol (Zhao et al., 2004),
now renamed to Chimera is similar to the

Figure 1. A Chord ring with five nodes and
three resources. Source : (Coulouris et al. 2007).

Figure 2. A CAN Virtual Space with dimensions
[0,2]x[0,2]. Source: (Coulouris et al., 2007).

Journal of Applied Computing Research, vol. 1, n. 2, p. 104-110, Jul/Dec 2011106

Fonseca, Camargo, Pilla and Cavalheiro | Energy Consumption in Peer-to-Peer Protocols for Ubiquitous Devices

Pastry protocol. Each node holds a table with
information about some nodes. This table is
divided in levels, where the i-level has the lo-
cation of nodes with the same i-1 bit prefix.
Hence, searching a key is done in steps in the
levels at each hop.

During publishing, the node with the iden-
tifier that is nearest to the resource key will be
responsible for keeping its content. A publish-
ing message is sent to all the nodes in the first
level of the current node. These will forward
the message to their second level and so on,
until the node that holds the resource is found.
To find a resource, it is enough to find a node
that is part of the publishing tree to discover
its location. Figure 4 shows the publishing and
discovery of a resource with id 4378 in a Tap-
estry network.

Simulation Tools

TinyOS (Levis et al., 2004) is a minimalistic
operating system aimed for networks of wire-
less sensors. It has been developed for systems
with severe power constraints. TinyOS of-

fers abstractions for services such as sensing,
communication, and storage. Communication
among components occurs through interfaces,
establishing a hierarchy of components. Execu-
tion of applications is done through interactions
among user components and operating system.

Avrora (Titzer et al., 2004) is a set tools for
simulation and program analysis developed
for AVR microcontrollers such as the ones
found in ATMel and Mica2 sensors. Simulation
is executed in instruction level, with great pre-
cision. Networks of sensors can be simulated,
with information about energy consumption in
Joules, number of cycles per instruction, as well
as debugging and profiling functions, memory
usage and content, among other possibilities.
Simulations generate reports in plain text with
all the information requested by the user.

Triva (Schnorr et al., 2010) analyses paje trace
files from the execution of parallel applications.
Together with the GraphViz library (Ellson et
al., 2001), Triva presents graphical information
about the behavior of monitored applications.
It is possible to generate the graph of the simu-
lated network to expose its logical topology.

Figure 3. Tables for node 10233102 in a Pastry network.

Journal of Applied Computing Research, vol. 1, n. 2, p. 104-110, Jul/Dec 2011 107

Fonseca, Camargo, Pilla and Cavalheiro | Energy Consumption in Peer-to-Peer Protocols for Ubiquitous Devices

SimGrid (Casanova et al., 2008) is a set of
services implemented in C for simulation. The
MSG module aims to ease prototyping distrib-
uted applications, abstracting details such as
communication primitives. Traces are execut-
ed and evaluated, presenting the messages ex-
changed among network nodes.

The first step in the SimGrid environment
is to generate the platform for the simulation.
This platform is defined in a XML file, generat-
ed with the help of the Simulacrum tool. Then,
the application to be simulated is defined, and
the processes are described in C source files. In
the next step, a XML file with the description
of the distribution of processes among nodes
is defined. After all these configuration files
have been defined, it is possible to execute the
simulation.

The simulation generates a trace file, which
is given as input for the Triva tool. Trace files
are analyzed and a graph is generated present-
ing specific characteristics about the simula-
tion. Figure 5 shows this process.

In the TinyOS environment, first a nesC
source file with the application to be simulated
is developed. This file is compiled and gener-
ates an object file. It is then processed by the
avr-objdump tool to build an executable file for
the Avrora architecture. The simulation out-
puts information about energy consumption.

Results

To compare the chosen protocols, a test
scenario where a network of ten nodes and a
file to be distributed was developed. For the
client-server approach, ten clients and one
server were used, while in the peer-to-peer ap-
proaches ten peers were simulated.

Four message types were used:
� Requisitions, sent by nodes that want to

receive an information or resource;

� Answers, sent by nodes that received req-
uisitions;
� Messages encapsulating files; and
� Acknowledgments to received file messages.

Requisition messages are very short, hence
they are not counted. Answer messages have
a short, constant size, empirically chosen as 5
KB. Acknowledgments and file messages were
defined as 1 MB. This size was chosen with the
objective of generating a significant load in the
network, but without congestion. Processing
a message has a cost proportional to its size,
and each processor is capable of 100 KFLOPS.
Transmission rates are only limited by network
bandwidth, which was fixed in 125 Kbps. The
latency simulated was fixed in 1 μs, simulating
a local network environment.

Experiments were divided in measuring mes-
sage costs, and measuring computational cost of
the algorithms. Network measurements were
simulated in SimGrid, while the other measure-
ments were executed in TinyOS and Avrora.

Six different file transfer protocols were
simulated in SimGrid. One of the simula-
tions implemented a client-server approach.
The remaining simulations implemented the
peer-to-peer protocols discussed in Section 2:
Gnutella, Chord, CAN, Pastry, and Tapestry.
Both approaches were developed with the
Simulacrum tool (Quinson et al., 2010), with
the only difference that the client-server ap-
proach has an extra node for the server.

SimGrid’s simulations are deterministic, thus
there is no point in repeating the experiments
multiple times. In Avrora, each experiment was
executed 30 times and the average calculated.

Network Simulations

The simulation of the network costs of the
protocols for the simulated scenarios produces

Figure 4. Tapestry routing. Source: (Zhao et al., 2004)

Journal of Applied Computing Research, vol. 1, n. 2, p. 104-110, Jul/Dec 2011108

Fonseca, Camargo, Pilla and Cavalheiro | Energy Consumption in Peer-to-Peer Protocols for Ubiquitous Devices

results measured in energy units (e.u.), which
are not absolute values as they are dependent
on specific details of the network equipment
used, but are proportional to real energy units
such as Joules.

For the client-server approach, the average
consumption was 16528 e.u., while the stand-
ard deviation is 24700 e.u. As it can be seen,
the average is much smaller than the stand-
ard deviation, because the amount of energy
spent in the server is much larger (90909 e.u.
for the server and 9090 e.u. for each client)
and thus the individual values do not follow a
Poisson distribution.

Figure 6 shows the average consumption
and standard deviation for the peer-to-peer
protocols. Standard deviation is shown as the
error signal on top of each column. The aver-
age energy consumption for the Chord proto-
col is the smallest one, with 627 e.u. CAN is
the second best, with an average consump-
tion of 678 e.u. Gnutella presents the largest
average consumption, with an average of 1577
e.u., more than two times the energy spent by
Chord and CAN, but still less than the client-
server. Its worse results are mainly due to not
having a distributed hash table and relying
on flooding for searches. The standard devia-

tion for Tapestry was 319 e.u., the best result.
Gnutella again presents the worst results, with
a standard deviation of 981 e.u.

Figure 7 shows the distribution of energy
consumption among peers in the Chord pro-
tocol. Each column corresponds to a peer, the
uppermost part being related to the messages,
and the bottom part related to the energy con-
sumption during the file transfers. Notice that
it is not necessary to execute an organization
step for each file transfer. The large variation
on the distribution of energy consumption is
due to the fact that each node distributes the
file to a variable number of nodes, unlike the
client-server approach where the load is con-
centrated in a server node.

The best protocol may be chosen based on
the network characteristics. The protocol that
presents the lowest energy consumption dur-
ing the organization step is the CAN protocol,
due to its more simpler construction of an or-
ganized space of identifiers. The best protocol
in the routing step was Chord. Its advantage
is due to being the only one having a routing
table with a fixed number of contacts defined
from the size of the space of identifiers.

Processing Costs

Two applications implementing the client-
server protocol and one of the peer-to-peer
alternatives were simulated in the TinyOS
environment. Gnutella was chosen in order to
get the worst-case scenario for the peer-to-peer
protocols and compare it to the client-server
approach.

The Avrora tool was used to simulate the
nodes and analyze the energy spent. Each
simulation was repeated 30 times, and the
following results are the average of all execu-
tions. Avrora outputs energy measurements in
Joules.

Table 1 presents the average energy spent in
each node during the distribution of a file us-
ing the client-server approach and the Gnutella
protocol. For both cases the difference among
clients (or peers, in the Gnutella case) are very
small. However, the difference of energy spent
in peers and clients is small, with 7.2% less en-
ergy spent by clients. Even if the energy spent
in the server is accounted, the client-server is
still more economic in average, requiring 6.5%
less energy than Gnutella. But as we simulat-
ed an extra server, the total amount of energy
spent was larger, with 3.5332 J in client server
and 3.4350 J in Gnutella.

Figure 5. Workflow for the network simulation.

Journal of Applied Computing Research, vol. 1, n. 2, p. 104-110, Jul/Dec 2011 109

Fonseca, Camargo, Pilla and Cavalheiro | Energy Consumption in Peer-to-Peer Protocols for Ubiquitous Devices

Final Remarks

In this work, two different scenarios for the
distribution of a file to border devices were eval-
uated. The first scenario evaluated client-server
architecture, while the second scenario evaluat-
ed five different protocols. Simulations in Sim-
Grid and TinyOS showed that the client-server
approach did not distribute nor minimized the
energy spent; however, it may be an interesting
option when the node that keeps the resource is
directly connected to the power grid.

Among the peer-to-peer protocols, Chord
was the most economic. On the other hand, the
Tapestry protocol presented the most uniform
distribution of energy consumption among
peers, followed by Chord. During the organi-

zation step, the smallest consumption was ob-
served for the CAN protocol. In the routing
and file distribution steps, the Chord protocol
showed the best results again.

The worst results for the peer-to-peer pro-
tocols were those from the Gnutella protocol,
mainly due to it not being a structured proto-
col and lacking distributed hash tables. Hence,
for scenarios with a small number of nodes,
Chord is a good choice.

In future works, we expect to simulate and
evaluate different environments, with em-
phasis in networks with a larger number of
devices. We also intend to implement DHT-
based protocols for simulation in the TinyOS
to get more precise results in terms of ener-
getic efficiency for these protocols.

Figure 6. Average energy consumption and standard deviation for peer-to-peer protocols in
energy units (e.u.)

Figure 7. Energy consumption distribution among peers in the Chord protocol.

Journal of Applied Computing Research, vol. 1, n. 2, p. 104-110, Jul/Dec 2011110

Fonseca, Camargo, Pilla and Cavalheiro | Energy Consumption in Peer-to-Peer Protocols for Ubiquitous Devices

Acknowledgments

This work was partially supported by a
CNPq Universal grant and FAPERGS/CNPq
PRONEX Green Grid project.

References

CASANOVA, H.; LEGRAND, A.; QUINSON, M.
2008. Simgrid: a generic framework for large-
scale distributed experiments. In: IEEE INTL.
CONF. ON COMPUTER MODELING AND
SIMULATION, Cambridge, 2008. Proceedings….
Cambridge, p. 126-131.

 http://dx.doi.org/10.1109/UKSIM.2008.28
COULORIS, G.; DOLLIMORE, J.; KINDBERG, T.

2007. Sistemas Distribuídos: Conceitos e Projeto.
Porto Alegre, Bookman, 792 p.

LEVIS, P. ; MADDEN, S.; POLASTRE, J.; SZEWC-
ZYK, R.; WHITEHOUSE, K.; WOO, A.; GAY, D.;
HILL, J.; WELSH, M.; BREWER, E.; CULLER, D.
2004. TinyOS: An operating system for sensor
networks. In: M. WEBER; J.M. RABAEY; E.H.L.
AARTS. Ambient Intelligence. Berlin, Springer
Heidelberg, p. 115-148.

 http://dx.doi.org/10.1007/3-540-27139-2_7
ELLSON, E.R.; GASNER, E.; KOUTSOFIOS, E.;

NORTH, S.C.; WOODHULL, G. 2001. Graphviz
- Open Source Graph Drawing Tools. In: SYM-
POSIUM ON GRAPH DRAWING (GD), Vien-
na. Proceedings... Vienna, p. 483-484.

 http://dx.doi.org/10.1007/3-540-45848-4_57
PLAXTON, C.G.; RAJARAMAN, R.; RICHA, A.W.

1997. Accessing nearby copies of replicated ob-
jects in a distributed environment. In: ANNUAL
ACM SYMPOSIUM ON PARALLEL ALGO-
RITHMS AND ARCHITECTURES (SPAA), New
York, 1997. Proceedings… New York, p. 311-320.
http://dx.doi.org/10.1007/s002240000118

QUINSON, M.; BOBELIN, L.; SUTER, F. 2010. Syn-
thesizing Generic Experimental Environments
for Simulation. In: INTL. CONFERENCE ON
P2P, PARALLEL, GRID, CLOUD AND INTER-
NET COMPUTING, Fukuoka, 2010. Proceed-
ings… Fukuoka, p. 222-229.

 http://dx.doi.org/10.1109/3PGCIC.2010.37
RATNASAMY, S.; FRANCIS, P.; HANDLEY, M.;

KARP, R.; SHENKER, S. 2001. A scalable con-
tent-addressable network. In: CONF. ON AP-
PLICATIONS, TECHNOLOGIES, ARCHITEC-
TURES, AND PROTOCOLS FOR COMPUTER
COMMUNICATIONS (SIGCOMM), San Diego.
Proceedings… New York, p. 161-172.

 http://dx.doi.org/10.1145/383059.383072

RIPEANU, M. 2001. Peer-to-peer architecture case
study: Gnutella network. In: INTL. CONFER-
ENCE ON PEER-TO-PEER COMPUTING
(P2P), Linkoping, 2001. Proceedings… Linkop-
ing, p.99-100.

 http://dx.doi.org/10.1109/P2P.2001.990433
ROWSTRON, A.; DRUSCHEL, P. 2001. Pastry: Scal-

able, decentralized object location and routing for
large-scale peer-to-peer systems. In: IFIP/ACM
INTL. CONFERENCE ON DISTRIBUTED SYS-
TEMS PLATFORMS (MIDDLEWARE), Heidel-
berg, 2001. Proceedings… Heidelberg, p. 329-350.

 http://dx.doi.org/10.1007/3-540-45518-3_18
SATYANARAYANAN, M. 2001. Pervasive comput-

ing: Vision and challenges. IEEE Personal Com-
munications, 8(4):10-17.

 http://dx.doi.org/10.1109/98.943998
SCHNORR, L.M.; HUARD, G.; NAVAUX, P.O.A.

2010. Triva: Interactive 3D visualization for per-
formance analysis of parallel applications. Fu-
ture Generation Computer Systems, 26(3):348-358.
http://dx.doi.org/10.1016/j.future.2009.10.006

SILVA, A.R.; ALMEIDA, H.M.P.; MACAMBIRA, T.;
GUEDES, D.O.; MEIRA, W.; FERREIRA, R.A.C.
2005. Hash consistente como uma ferramenta
para distribuição de tarefas em sistemas distribu-
ídos reconfiguráveis. In: WORKSHOP EM SIS-
TEMAS COMPUTACIONAIS (WSCAD), Rio de
Janeiro. Proceedings… Rio de Janeiro, p. 169-176.

STOICA, I; MORRIS, R; LIBEN-NOWELL, D.;
KARGER, D; KAASHOEK, M.F.; DABEK, F.;
BALAKRISHNAN, H. 2003. Chord: A scalable
peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Transactions on Networking,
11(1):17-32.

 http://dx.doi.org/10.1109/TNET.2002.808407
TITZER, B.; LEE, D.K.; PALSBERG, J. 2004. Avrora:

Scalable sensor network simulation with precise
timing. In: INTL. SYMPOSIUM ON INFORMA-
TION PROCESSING IN SENSORS NETWORKS
(IPSN), Los Angeles. Proceedings… Los Angeles,
p. 477-482.

 http://dx.doi.org/10.1109/IPSN.2005.1440978
ZHAO, B.Y.; HUANG, L.; STRIBLING, J.; RHEA,

S.C.; JOSEPH, A.D.; KUBIATOWICZ, J.D. 2004.
Tapestry: A resilient global-scale overlay for ser-
vice deployment. IEEE Journal on Selected Areas
in Communications, 22(1): 41-53.

 http://dx.doi.org/10.1109/JSAC.2003.818784

Submitted on October 05, 2011.
Accepted on December 14, 2011.

