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Abstract. This paper presents MHARS (Mobile Human Activity Recognition System), a mobile system de-
signed to monitor patients in the context of Ambient Assisted Living (AAL), which allows the recognition of 
the activities performed by the user as well as the detection of the activities intensity in real time. MHARS 
was designed to be able to gather data from different sensors, to recognize the activities and measure their 
intensity in different user mobility scenarios. The system allows the inference of situations regarding the 
health status of the patient and provides support for executing actions, reacting to events that deserve at-
tention from the patient’s caregivers and family members. Experiments demonstrate that MHARS presents 
good accuracy and has an affordable consumption of mobile resources.
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Introduction

One of the goals of pervasive computing is 
to create Ambient Intelligence, in other words, 
to make environments sensitive to the pres-
ence of human beings (Cook et al., 2009). The 
basic idea behind smart environments is to 
rely on sensors and other pervasive devices, 
interconnected through a wireless network, 
to detect characteristics of users and the en-
vironment non-obtrusively. From the data 
collected, intelligent systems can make some 
kind of inference (reasoning) and then select 
and execute actions that will benefit the pre-
sent users (Cook et al., 2009). In addition, sys-
tems for smart environments need to be agile 
in response time and adaptable to changes in 
the context of the environment and the users.

In the healthcare field, the term Ambient 
Assisted Living (AAL) has been used to desig-
nate a multidisciplinary research area focused 
on the development of intelligent systems for 
remote monitoring of the daily activities of 
patients (ADL – Activities of Daily Living) 
transiting through intelligent environments, 
such as Smart Homes (Memon et al., 2014). 
There is a broad spectrum of practical ap-

plications for AAL systems, such as rescue 
systems and emergency response, detection 
of falls, video surveillance systems, etc. Pa-
tient monitoring by means of AAL systems 
differs from the traditional healthcare model. 
In the latter, it is necessary that patients pe-
riodically visit hospitals for medical evalua-
tion. In AAL, patient follow-up can be held at 
distance, in the comfort of the home, or even 
when they move around (Deborah and Ida, 
2010). With the aid of AAL systems, health-
care professionals can follow the situation 
of the patient in real-time and quickly make 
decisions and perform actions to improve or 
stabilize the clinical situation.

AAL systems require an infrastructure 
composed of a network of wireless sensors 
and actuators (WSAN) for healthcare, comput-
er equipment, software applications and data-
bases, which are interconnected to exchange 
data and to provide intelligent patient care ser-
vices. Sensors and actuators forming WSANs 
are connected to local servers to send medical 
data to health monitoring systems. The local 
servers, also known as intelligent residential 
gateways, often use a wireless router to allow 
multiple real-time patient monitoring applica-
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tions to send and receive data over home net-
works (Memon et al., 2014).

Among the various sensors that can be 
applied in AAL systems there are wearable 
medical sensors able to monitor physiological 
signals (e.g. electrocardiogram, electromyo-
graphy, cardiac frequency, volume of oxygen 
consumed) or to collect data that reflect the 
body movement (e.g. accelerometer and gy-
roscope). Usually, personal mobile devices 
(cell phones, tablets and smartphones) are also 
equipped with sensors of movement or loca-
tion (e.g. accelerometer, GPS). Environmental 
sensors can also be used, as they collect infor-
mation that helps to determine whether the 
environmental conditions (temperature, lu-
minosity, air humidity, carbon dioxide levels) 
favor the patient’s health.

Monitoring the patient’s activities is im-
portant to develop a therapeutic strategy 
aiming to optimize individual treatment out-
comes. The improvement in individual phys-
ical performance is an important asset in the 
treatment of chronic diseases. In many cases, 
the use of drugs is not sufficient to ensure im-
proved quality of life for patients with chron-
ic diseases. Studies show that the regular 
practice of physical exercise, when appropri-
ate to the patient’s physical condition, helps 
to obtain the best results in most treatments 
of chronic diseases, especially cardiovascu-
lar (e.g. hypertension, heart failure, atrial fi-
brillation) and respiratory ones (e.g. chronic 
bronchitis, emphysema, asthma) (Sui et al., 
2007). In this manner, it is common that the 
health professionals recommend that the pa-
tient performs certain physical exercises, or 
even to suspend some activities inadequate 
for his/her treatment.

AAL systems with the ability to recog-
nize patterns of human activity (e.g. to walk, 
run, sit) from various types of sensor data are 
referred to as HARS (Human Activity Rec-
ognition Systems). For example, this type of 
system allows to infer whether the patient 
walks or runs frequently, or adopts a more 
sedentary posture. The recognition process is 
a complex task, requiring the analysis of sev-
eral parameters, which may vary depending 
on the kind of activities, the available sensors, 
among others. Furthermore, a profound un-
derstanding of how to perform the analysis of 
data related to the movement of individuals 
is needed, as well as knowledge about pre-
processing techniques and efficient inference 
algorithms to be used.

Besides detecting the user’s performed 
activity, in some situations it is important to 
assess how the patient is reacting to certain 
physical activities, and even to check wheth-
er the effort level is compatible with his/her 
physical limits. These limits are imposed by 
the patient’s health condition, age, weight and 
other factors. In the event of non-conformance 
to the patterns of activity and intensity recom-
mended, the AAL system can take the decision 
to issue an alert to the health professional re-
sponsible for the patient. Another possibility 
is to directly request the patient to increase or 
decrease the activity intensity to match his/her 
limits. For example, if during a run the heart 
rate rises above what is considered normal for 
that activity, the AAL system may recommend 
the patient to run at a slower pace or even to 
suspend the activity. Alternatively, the system 
could suggest a different activity, such as a 
walk, if better suited to the patient’s state.

In the context of HARS, accuracy in rec-
ognizing both the activity and its intensity 
indicates the efficiency of the system and var-
ies according to several factors, including the 
quality of the data collected by the sensors and 
the classification algorithm applied. The qual-
ity of the collected data depends on the type 
and characteristics of the sensor employed. 
The combination of data provided by differ-
ent types of sensors helps to infer the patient’s 
situation, enabling a quick decision-making 
and action execution, especially in emergency 
situations. Therefore, it is necessary to over-
come problems associated with sensor failures 
or the low precision of the data collected, in 
order to guarantee a high degree of accuracy 
in the recognition of activities.

Due to the mobility inherent in physical 
activities, some AAL systems place their activ-
ity and intensity detection module in personal 
mobile devices to provide greater flexibility. 
However, given the constraints in relation to 
processing power and battery consumption of 
these devices, a major challenge is how to per-
form the activity inference and intensity meas-
urement in a timely manner and still consume 
computer resources in a sustainable manner. 
This balance is fundamental to reach a cost/
benefit ratio that makes the system viable.

In this context, the aim of this article is to 
present the architecture, functionalities and 
evaluation results of MHARS (Mobile Human 
Activity Recognition System), an AAL sys-
tem aimed at the recognition of user activities 
and measurement of their respective intensi-
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ties, which runs on mobile personal devices. 
This system was developed at the Distributed 
Systems Lab of the Federal University of Ma-
ranhão (UFMA), Brazil, in collaboration with 
the UFMA University Hospital. The main goal 
of this research is to support the monitoring 
of patients with chronic diseases. MHARS’s 
main requirements are: the ability to interact 
with different types of sensors; to recognize 
physical activities and to measure the intensity 
with which they are being executed; the ability 
to infer situations related to the user’s health 
condition and to perform actions in response 
to them; and to provide storage and support 
for remote querying of patient data.

As MHARS main contributions we high-
light its capacity of providing the recognition 
of the user’s activities combined with their  
intensity; the fact that it runs solely on the 
mobile device, without the need for a server 
infrastructure for the inference of the user’s 
activities; the support for various patient’s 
mobility scenarios; a good accuracy of the 
activity recognition algorithm; and the provi-
sion of a rich set of features, that include the 
detection of user-defined situations and the 
provision of a decision-making engine for de-
fining an action plan (set of actions) that must 
be executed whenever relevant health situa-
tions are detected.

The remainder of the article is structured 
as follows. MHARS (Mobile Human Activity 
Recognition System) describes the components 
and the main features of MHARS. Evaluation 
presents the results concerning the evalua-
tion of the system, i.e. the verification of the 
achieved accuracy in activity detection and the 
evaluation of performance and resource con-
sumption of the system. Related work discusses 
related work. Finally, Conclusion contains the 
conclusions of this work and prospects of ap-
plying MHARS in healthcare.

MHARS (Mobile Human Activity 
Recognition System)

MHARS is a mobile system aimed at track-
ing patients in the context of Ambient Assisted 
Living. It allows the recognition of the activi-
ties carried out by the user as well as the detec-
tion of the intensity of this activity in real time.

The development of MHARS has had the 
institutional support of UFMA University 
Hospital (HU-UFMA) and, in particular, of 
the Center for Research in Nephrology within 
HU-UFMA. During the execution of this work, 

several meetings with health professionals 
from HU-UFMA were held. The purpose of 
these meetings was to specify the requirements 
of a system capable of performing remote 
monitoring of patients with chronic diseases. 
In particular, the main physical activities to be 
monitored were identified, as well as the mod-
els for measuring the activity intensity.

The following functional requirements 
were then established: (i) multiple interac-
tion with sensors: to be able to interact with 
different types of sensors (wearable, mobile, 
or embedded in smart environments), to ob-
tain different types of information about the 
patient (e.g., physiological body movement 
and location) and the environments in which 
he/she lives (e.g. brightness, temperature, air 
quality); (ii) activity recognition: to be able to 
collect, process and classify the data obtained, 
so as to enable the automatic recognition of 
the activities performed by the patient in real 
time; (iii) measurement of intensity: being able 
to gauge the intensity with which the patient 
performs the activities proposed by healthcare 
professionals; (iv) situation inference: to be 
able to infer situations related to the patient’s  
health (e.g. running with moderate intensity 
at an altitude of 1,800 meters at 15:00 having 
atrial fibrillation), based on data from sensors, 
the activity performed and its intensity, and 
taking into account the treatment specificity of 
each patient; (v) decision-making: being able 
to make decisions and to take actions appro-
priate to each defined situation in which the 
patient may be  during the execution of activi-
ties; (vi) storage and availability of data: the 
data from activity recognition and intensity 
measurement should be stored permanently 
and made available to healthcare profession-
als; (vii) mobility: the system must run in per-
sonal mobile devices, so that it can be used by 
the patients in their daily normal routines.

Non-functional requirements were listed 
as follows: (i) the inference process of activities 
must have an acceptable accuracy; (ii) the sys-
tem must consume a minimum of computer 
resources; (iii) the system must run on modern 
mobile devices.

For the development of some components 
of MHARS, the SDDL (Scalable Data Distri-
bution Layer) (David et al., 2013) and M-Hub 
(Mobile Hub) (Talavera et al., 2015) middle-
ware were used, both of them developed at the 
Laboratory of Advanced Collaboration (LAC) 
of the Pontifical Catholic University of Rio de 
Janeiro (PUC-Rio), in collaboration with the 
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Distributed Systems Laboratory of the Federal 
University of Maranhão (UFMA).

SDDL is a scalable and high-performance 
communication middleware which allows the 
communication between stationary nodes (re-
mote servers) and mobile nodes (mobile devic-
es) connected via wireless networks (David et al., 
2013). M-Hub is a middleware service designed 
to run on mobile devices, whose purpose is to 
discover, record and transmit data sent by smart 
objects (sensors and actuators) through the 
SDDL middleware (Talavera et al., 2015).

Figure 1 displays the components of 
MHARS. S2PA (Short-Range Sensor, Presence 
and Actuation) is the component that performs 
the collection of context data from low-level 
sensors and distributes this data to HURS (Hu-
man Activity Recognition Service), IMS (Intensi-
ty Measurement Service), SAS (Situation-Aware 
Service) and the Connection Service. This can be 
acceleration data (5), heart rate data (6) or any 
other raw data collected from nearby sensors 
(1). HURS performs activity recognition based 
on the acceleration data; IMS recognizes the in-
tensity of the activity using the heart rate data; 
SAS detects the user’s situation. They send the 
inferred activity (2), intensity (3) and situation 
(4) to the Connection Service that performs their 

distribution through the MR-UDP protocol to a 
cloud infrastructure where SDDL services are 
executed. Data sent through the Connection Ser-
vice are stored locally on the mobile device until 
a network connection is available, when they 
will be forwarded to the SDDL cloud. The con-
text data passed to the SDDL cloud is persisted 
into a relational database and made available 
to health professionals through a WEB applica-
tion. Finally, DMS is a component responsible 
for executing actions based on the inferred us-
er’s situation (4). The next subsections detail the 
operation of each of these components.  

S2PA Service (Short-Range Sensor,  
Presence and Actuation)

To perform the recognition of activities, the 
measurement of their intensities, and the de-
tection of the corresponding user’s situation, 
in this work we used the following sensors: ac-
celerometer and heart rate sensor. Specifically, 
the accelerometer was used in the detection of 
activities, while the detection of intensity was 
done with a sensor capable of measuring the 
user’s heart rate.

A Zephyr Bioharness 31 sensor was used 
to collect the physiological data (heart rate) of 

Figure 1. Components of MHARS.

1 Technical specifications of the Zephyr Bio Harness 3 wearable device are available at http://zephyranywhere.com/prod-
ucts/bioharness-3.
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the patients. This is a wearable sensor that is 
connected to the mobile devices via Bluetooth 
technology2. The Zephyr Bioharness 3 allows 
the monitoring of heart rate and breathing. It 
also has an acceleration sensor. In addition to 
this, we also used the sensors available on a 
Moto G II3 smartphone during the develop-
ment and evaluation of MHARS.

The accelerometer is a sensor capable of 
measuring the acceleration of the body. The 
sensor measures acceleration only through 
the phenomenon of weight experienced by 
the user’s body. Modern devices are capa-
ble of measuring the acceleration in three 
dimensions (X, Y, Z), which allows the con-
struction of a wide range of applications that 
need to know the position and movement of 
the device.

The heart rate monitor (or heart rate sen-
sor) allows the measurement of the number of 
heart beats of a person per time unit during 
the execution of a specific activity. This is done 
through the analysis of electrocardiographic 
waves coming from the heart. The sensor ana-
lyzes these signals to measure how often the 
heart is beating per minute.

Figure 2 presents the position of the sen-
sors in the body of patients assumed in this 
research. It can be observed that the heart rate 
sensor is positioned in the patient’s chest to 
collect vital signs.

To implement the component responsible 
for data collection, we used the S2PA service 
(Short-Range Sensor, Presence and Actuation) 
present in the M-Hub middleware. This service 
is responsible for the acquisition of data from 
the sensors.  S2PA can get data in two ways: 
(i) when the sensor to be used is built into the 
smartphone (internal sensor), the S2PA [sen-
sor), S2PA?] carries out the data acquisition 
through the Android sensors API4; (ii) when 
using external sensors, such as the Zephyr Bio-
harness 3. In the latter case, the service is also 
responsible for the preliminary phase of dis-
covery and connection with external sensors, 
to subsequently receive data from them.

During development, it was necessary to 
incorporate into S2PA a selective sensor activa-
tion feature according to the needs of the appli-

cation, since the default S2PA version performs 
automatic activation of all available sensors, 
which can lead to a high consumption of com-
putational resources. So, in order to improve 
the performance of S2PA, this component has 
been modified to allow every application run-
ning on the mobile device to activate only those 
sensors necessary for its functioning.

HURS (Human Activity Recognition Service)

The HURS component is responsible for 
the recognition of the activity performed by 
the patient. HURS is able to recognize the 
following activities: walking, running, jump-
ing, standing, lying down, and walking up or 
down stairs. 

To recognize the activities, HURS receives 
the acceleration data and performs a pre-
processing on them. The pre-processing con-
sists of the conversion and refinement of the 
sign from the acceleration sensor to a more 
adequate format for the data classifier. Dur-
ing pre-processing, the accelerometer signal 
characteristics are extracted, resulting in a re-
duced set of numeric values that represent cer-
tain characteristics related to acceleration (e.g. 

2 Details about Bluetooth are available at https://developer.bluetooth.org/TechnologyOverview/Pages/core-specification.
aspx.
3 Technical specifications of the Moto G II Smartphone are available at http://www.motorola.com/us/smartphones/moto-
g-2nd-gen/moto-g-2nd-gen.htm.
4 Details about the Android Sensor API are available at http://developer.android.com/intl/pt-br/guide/topics/sensors/sen-
sors_overview.html.

Figure 2. Position of the sensors used in the 
experiments. 
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mean, standard deviation, the peak accelera-
tion, and entropy of the signal). 

In HURS we used pre-processing tech-
niques with low computational cost, which 
are explained in Evaluation. The pre-processed 
data are then used as input to a machine learn-
ing algorithm, a previously trained classifier, 
which is responsible for categorizing the ac-
tivity that the user is performing. The specific 
machine learning algorithm used in HURS 
was IBk, available from the WEKA library 
(Mark et al., 2009). This library contains vari-
ous machine learning algorithms capable of 
recognizing patterns in data sets.

IMS (Intensity Measurement Service)

IMS is the MHARS component responsible 
for the activity intensity measurement. The ac-
tivity intensity is related to the physiological 
effects (e.g. stress, muscle fatigue, lactic acid) 
of the activity being performed, considering 
the health condition and the physical limits of 
each patient. The intensity is usually mapped 
to a scale comprising a set of ranges called in-
tensity zones (ACSM’s, 2006).  In general, the 
intensity calculation can consider different pa-
rameters, including heart rate, ECG (electro-
cardiogram) or volume of consumed oxygen. 
Choosing the best parameter varies according 
to the monitoring requirements, such as the 
environment in which the patient is located, 
the degree of intrusiveness, and the portability 
of the sensors to be used.

In the development of IMS, it was necessary 
to map the medical knowledge related to the 
intensity levels of physical activities to a com-
putational model. Therefore, interviews with 
health professionals were made and a biblio-
graphic study was carried out to identify the 
possible approaches to be used to detect the 
intensity of physical activities. As a result of 
this study, it was identified that the dominant 
model for detecting the intensity of physical 
activities consists in the analysis of the heart 
rate (Tanaka et al., 2001; Sui et al., 2007).

Heart rate data represent the number of 
heartbeats during a given time interval, usually 
measured in minutes. There are several features 
of a person’s heart rate; the main ones are:

•  Basal heart rate (FCBasal): this is the heart 
rate when the individual is at rest, that is, 
the lowest frequency in which the heart 
hits. It must be measured when the person 
wakes up because this is when the body is 
in the highest degree of relaxation.

•  Maximum heart rate (FCMax): this is the 
highest frequency at which a person’s 
heart can beat. It must be measured by 
exposing the individual to an extreme 
physical stress. The maximum heart rate 
can also be obtained by means of formu-
las, but this calculation may not result in 
a precise maximum heart rate.

IMS uses the maximum heart rate as the 
main parameter to determine the intensity lev-
el of the activities. The closer the current heart 
rate is to FCMax, the highest the intensity of the 
activities. The health professional can inform 
the maximum heart rate of the patient to IMS 
or this can be calculated by using the formula 
FCMax = 220-age. This formula was developed 
by Fox et al. (1971) and is one of the most com-
monly used formulas to determine the FCMax 
of a person. There is no precise formula for the 
FCMax (Robert and Robergs, 2002). Although 
the formulas are a means to find a value ap-
proaching the FCMax, it is recommended that 
the health professionals request the patient to 
undergo a stress test to accurately determine 
the FCMax.

Table 1 shows the five intensity levels 
(heart rate zones) recognized by IMS. Each 
level consists of a range of heart rates. More 
intense activities require the heart to operate 
at a higher frequency. In lower intensity ac-
tivities, the heart rate tends to be lower. For 
example, a person who performs a low-level 
race will feature a heart rate between 60% and 
70% of his/her FCMax. In another example, an 
ordinary person who is presenting a heart rate 
above 90% of his/her FCMax, while conduct-
ing a physical activity, can be characterized as 
being in a dangerous situation, because only 
athletes with a good physical conditioning can 
make activities with this intensity. To perform 
physical activity, it is recommended that the 
patient in treatment stay within the ideal heart 

Intensity Maximum heart rate (%)
Very Light <57% 
Light >=57%and <64%
Moderate >=64% and <76%
Intense >=76% and <96%
Very Intense <=96%

Table 1. Intensity levels according to the maximum 
heart rate (ACSM’s, 2006).
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rate, i.e. respect the intensity compatible with 
his/her physical conditioning.

SAS (Situation-Aware Service)

SAS is responsible for inferring the different 
situations experienced by the patient. Generally, 
each situation is characterized by the correlation 
of a set of data related to the ongoing activity, its 
intensity, and even data on the chronic condi-
tion and the physical limits of each patient. SAS 
has an intrinsic relationship with DMS (Deci-
sion-Making), which is the component respon-
sible for decision-making and the execution of 
actions in response to the occurrence of certain 
situations. Situations, decisions and actions to 
be performed are represented through rules of 
the Event-Condition-Action (ECA rules) type. 
These rules are specified by means of a lan-
guage based on an XML document. Therefore, 
health professionals may describe situations to 
be monitored through this language, duly as-
sisted by a computer specialist.

Figure 3 provides an example of a document 
that describes a dangerous situation to patients 
with heart disease (Pinheiro et al., 2013). This 
example helps to explain how SAS works.

The first step to specify a situation consists 
in informing the data to be used in the situ-
ation recognition. In the example of Figure 3, 
lines 6 to 9 define the heart rate and altitude 
data. Soon after that, the rules that charac-
terize a particular situation must be defined.  

The rules contain the logical operators (and) 
and (or), and comparison operators. Compari-
son operators check the difference between 
two values; one of them is the collected or 
inferred data, and the other a constant one. 
They return a Boolean value (true or false). 
The comparison operators supported by SAS 
are: equal, different, bigger, smaller, equal or 
greater and less than or equal. In the same ex-
ample, lines 10 to 21 set the expression to be 
validated. In this case, it is checked whether 
the user’s heart rate is above 100 beats per 
minute and whether the altitude of the place 
where the user is is greater than 2,000 meters. 
If the expression is true, SAS sends the inferred 
situation to the DMS and Connection Service.

Upon receiving the situation, DMS checks 
what are the actions to be carried out in ac-
cordance with the identified situation. Some 
examples of actions that DMS enables are: 
sending SMS, displaying a visual notification, 
and issuing a sound notification. In the exam-
ple of Figure 3, lines 22 to 26 define the action 
to perform if the expression is true. In that 
case, the action corresponds to sending a SMS 
message to a health professional.

MHARS users can define new situations 
by editing the XML document describing the 
ECA rules that is loaded during the initializa-
tion of SAS. That will usually be done by an IT 
professional who must translate desired situ-
ations and actions described by health profes-
sionals into the above described XML syntax. 

Figure 3. XML document used to represent situations and actions.
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CS (Connection Service)

CS is the component responsible for the 
opportunistic connection to a cellular network 
or WI-FI, allowing the sending of data to a re-
mote server, as soon as there is an available 
network connection.

The remote server contains a database re-
lated to patient monitoring. On the one hand, 
this database can store low level data, in order 
to build a measurement history of the data col-
lected from the sensors placed on the patient’s 
body over time. On the other hand, it stores 
high level information, such as information 
that represents the history of situations expe-
rienced by the patient during treatment, or re-
cords of decisions and actions that were taken 
in emergency situations. The database can 
be queried remotely by health professionals 
through a Web platform.

During the boot process, CS establishes a 
connection with the SDDL gateway through 
the MR-UDP communication protocol, as well 
as with the database available on the device. 
Whenever the Connection Service receives data 
from S2PA, HURS, IMS or SAS, it checks wheth-
er the device is connected to a wireless network 
in order to forward it to the gateway. If the de-
vice is not connected to a network, the data is 
stored in a local database on the device. CS pe-
riodically checks whether the mobile device is 
connected to a wireless network and, as soon as 
a connection is available, propagates the data in 
the local database through the gateway.

Evaluation

This section describes the evaluation of 
MHARS. It first describes the experiments that 
were carried out to assess the accuracy of the 
classification process used to infer the activi-
ties performed by the user, detailing the tools 
and methods used in the evaluation process. 
Next, it presents the experiments carried out 
to analyze the use of computational resourc-
es required by MHARS during its operation. 
Since MHARS was developed to be executed 
in mobile devices, it must make a parsimoni-
ous use of computing resources in order to be 
used in practice.

Methodology for evaluating the activity 
recognition accuracy

The methodology for the evaluation of 
MHARS was based on case studies, which 

consisted of experiments involving the moni-
toring of 10 people performing the follow-
ing activities: walking up and down stairs, 
walking, running, sitting, standing and lying.  
To this end, the following metrics adopted was 
accuracy, which expresses the percentage of 
success in the recognition of the activities per-
formed in a set of samples collected in a given 
space of time.

In the experiments, we used a Motorola 
Moto G II Smartphone with Android OS 4.4.2 
KitKat and a Zephyr BioHarness 3 wearable 
device. Two accelerometers were used for the 
recognition of activities: the one built into the 
smartphone (internal sensor), and the other 
available in the wearable device (external sen-
sor). Every patient used the smartphone in 
two different positions: at the waist and in the 
user’s front right pocket, which we will refer 
to from now on just as “leg”. The wearable 
device was designed to be used only on the 
chest. The objective was to analyze the accu-
racy variation considering different positions 
of the accelerometer. Both sensors have been 
configured to operate on a frequency of 50 
Hz, since this value is frequently used in the 
literature (Hoseini-Tabatabaei et al., 2013; An-
guita et al., 2013) and is considered quite ad-
equate to detect both stationary activities (e.g. 
standing) as well as dynamic ones (e.g. run-
ning). In addition, this frequency is regarded 
as acceptable with respect to the battery con-
sumption of mobile devices. For the measure-
ment of the activity intensity, we only used a 
heart rate sensor embedded in the wearable 
device, operating at a frequency of 1 Hz. This 
frequency is the device’s standard and can-
not be configured. The preprocessing method 
used in the experiments consisted in obtain-
ing the following representative values: the 
average values of each axis (X, Y, Z), as well as 
the square root of the average obtained from 
the medium for each axis. These values are 
passed to the classifier to run the activity rec-
ognition process. It is important to note that 
other methods of preprocessing could also be 
adopted. However, other possibilities require 
greater consumption of computer resources, 
so they were not considered suitable for ac-
tivity recognition in real time executed solely 
on personal mobile devices, due to processing 
power and memory limitations.

The activity recognition process and the 
computation of its intensity were executed in 
intervals of 2.54 seconds. This means that, at 
a frequency of 50 Hz, the preprocessing, clas-
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sification, and intensity measurement are ex-
ecuted based on 128 samples of acceleration 
data in each cycle. This time window and the 
amount of samples are considered sufficient 
for the recognition of activities that are execut-
ed repeatedly. For example, a person walking 
normally performs 90 to 130 steps per minute, 
which corresponds to 1.5 and 2.7 steps per sec-
ond. Therefore, a time window of 2.54 seconds 
is more than enough to recognize this type of 
repetitive activity (Anguita et al., 2013).

The data classifier needs to be trained on 
the basis of representative data of labeled 
activities so it can subsequently correctly 
recognize the activities performed by the 
user. It is worth mentioning that the train-
ing procedure is an intensive computational 
process and, for that reason, is not performed 
on the mobile device, but rather on a server.  
To build the training dataset we adopted 
the following strategy: considering the total 
number of samples collected, 70% was de-
voted to the classifier’s training, while the 
remaining 30% were intended for its valida-
tion, that is, for evaluating the classifier’s ac-
curacy in correctly recognizing activities after 
it had gone through the training process. This 
split of the dataset was needed to verify the 
presence of overfitting (Russell and Norvig, 
2003), a problem that occurs when the clas-
sifier cannot recognize a given activity for 
which it was trained based on the analysis 
of unknown samples. This indicates that the 
classifier, even trained, cannot generalize the 
activity recognition, that is, it reflects an acci-
dental pattern found in the training data and 
not the general pattern of the problem.

Various machine-learning techniques are 
employed for the recognition of human activi-
ties, including instance-based methods, also 
known as lazy classifiers. This work investi-
gates the use of IBk, an instance-based algo-
rithm, for the recognition of human activities. 
IBk was chosen after a bibliographic study and 
several comparison experiments were con-
ducted to evaluate the relative effectiveness of 
machine learning algorithms frequently used 
in the problem of activity recognition (Hosei-
ni-Tabatabaei et al., 2013). Specifically, the fol-
lowing algorithms have been tested: decision 
tree algorithms, e.g. Random Forest, RepTree 
and Random Tree; lazy classifiers, e.g. IBk; 
neural networks learning, e.g. MLP with back-
propagation; and rule-based classifiers, e.g. 
JRIP. Among these, IBk achieved the highest 
accuracy values.

IBk is a machine-learning algorithm based 
on instances that works calculating the dis-
tance between pairs of instances of a problem 
and using this information to classify new in-
stances. A specific function should be used to 
measure the distance between the instances 
(Witten and Frank, 2005). When testing an 
unseen instance, the algorithm picks up the k-
nearest neighbors and measures the distance 
of the unseen instance to these. The unseen in-
stance will be put in the more frequent class 
among the k-nearest neighbors. For this rea-
son IBk is also known as K-Nearest Neighbors 
(KNN) algorithm.

Accuracy evaluation results

Table 2 presents the accuracy results ob-
tained for the different types of activities per-
formed and the varied accelerometer positions. 
Regarding the type of activity performed, sta-
tionary activities (that generate low variation 
of the acceleration) presented higher accuracy, 
when compared with dynamic activities (that 
generate higher acceleration variations). These 
results are attributed to the fact that the rec-
ognition of dynamic activities requires precise 
sensors that would allow the detection of vari-
ations in the acceleration in short time periods. 
Depending on the sensor precision, the data 
provided to train the classifier algorithm may 
not be the most representative for a given ac-
tivity, which could mistakenly lead to the in-
ference of an activity different to the one that 
the user is performing. The calibration of the 
sensors also tends to interfere with the degree 
of precision of the collected data, affecting the 
training of the classification algorithm and, 
consequently, resulting in lower activity rec-
ognition accuracy.

With respect to the accelerometer position, 
it can be seen that the accuracy is higher when 
the accelerometer is located at the waist and 
the leg, when compared to the results obtained 
by fixing it to the chest. These results are at-
tributed to the fact that, when positioned at the 
waist or the leg, the accelerometers can detect 
the user movement with greater precision, giv-
en that these parts of the body are moved more 
sharply during the execution of activities.

By analyzing the results, we can also con-
clude that HURS has a satisfactory activity 
recognition accuracy (83%), which proves that 
it can be reliably used in the monitoring of pa-
tients. This is reinforced by data found in the 
literature, which states that a system is satis-
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factory if it is capable of detecting human ac-
tivities with an accuracy higher than 70% (Ho-
seini-Tabatabaei et al., 2013). We also believe 
that HURS can achieve even higher accuracy 
by using approaches such as the use of more 
accurate sensors, the use of a larger volume 
of samples to train the classifier algorithm, 
and the use of classifiers built through a com-
bination of ML algorithms. It is important to 
highlight that the main focus of the described 
experiments was to evaluate the ability to rec-
ognize different activities considering differ-
ent positions of the acceleration sensors on the 
user’s body.

Methodology for evaluating the computing 
resource usage

For the evaluation of the computing re-
source usage demanded by MHARS for its 
execution we considered a scenario in which 
a health professional accompanies the daily 
activities carried out by patients. During this 
evaluation, we analyzed MHARS resource 
consumption running on a middle range 
smartphone, the Motorola Moto G II with An-
droid OS 4.4.2 KitKat. The objective of the per-
formed tests was to evaluate the MHARS CPU 
and memory usage stratified by the follow-
ing components: S2PA, which is responsible 
for gathering sensor data; preprocessing; and 
activity inference. We also measured battery 
consumption while running MHARS.   

For the evaluation of CPU and RAM usage, 
MHARS was executed for one hour. Measure-
ments were taken at intervals of 30 seconds, 
totaling 120 measurements for each resource 
(CPU and Memory) and MHARS component 
(data gathering, preprocessing, and infer-

ence). For the evaluation of the device’s bat-
tery consumption the following strategy was 
adopted: initially the device’s battery was ful-
ly charged, then the device was disconnected 
from the charger and we started the execution 
of MHARs. The system was also executed for 
one hour, collecting the battery level at inter-
vals of 30 seconds. Besides the mean value of 
the data samples collected during the experi-
ments, we also calculated the following statis-
tical data for each metrics: median, standard 
deviation, and maximum/minimum values.

Results of the evaluation of computing 
resource usage

Table 3 presents the average, median, and 
standard deviation and the maximum value for 
the CPU consumption of the three evaluated 
MHARS components. The pre-processing and 
inference components accounted for most of the 
CPU usage, due to the fact that they are respon-
sible for processing the acceleration data, while 
the data gathering component only forwards 
the data received from sensors. It can be seen 
that all components consumed less than 6% of 
the CPU usage during the tests, having an aver-
age value of less than 4.5% of CPU utilization. 
Therefore, we can conclude that MHARS can 
run on current mobile devices without consum-
ing too much processing power. 

Table 4 shows the results of MHARS’s 
memory usage. During this evaluation, the 
preprocessing component used more memory 
than the other ones, due to the fact that this 
component is responsible for buffering the ac-
celeration data collected for a time period of 
2.54 seconds. One can observe that individu-
ally all three components occupied less than 

Activity Type
Position of the Accelerometer

Leg Chest Waist
Running Dynamic 87.8% 66.1% 90.2%
Walking up stairs Dynamic 65.1% 51.4% 60.4%
Walking down stairs Dynamic 70.4% 59.6% 80.9%
Walking Dynamic 86.7% 79.8% 88.5%
Standing Stationary 88.2% 70.4% 86.2%
Sitting Stationary 85.3% 41.6% 87.6%
Lying Stationary 87.8% 71.5% 89.1%
Average accuracy values 81.6% 62.9% 83.3%

Table 2. Accuracies obtained for different accelerometer positions.
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10 MB of RAM during the tests, presenting an 
average value of 7 MB of memory usage. The 
results show that MHARS can run on current 
mobile devices requiring less than 30 MB of 
RAM, which represents only 3% of the RAM 
available on the device used in the experi-
ments. This is a satisfactory result, since cur-
rent mobile devices are usually equipped with 
1 or more GB of RAM. 

Figure 4 shows the battery charge level de-
cay of the mobile device during the one-hour 
period in which MHARS was executed. Dur-
ing the test the mobile device battery level 
dropped from 100% to 92% during the period 
of one hour, that is, the battery of the mobile 

device declined by 8% during the period con-
sidered. Therefore, we can estimate that the 
system can be used for a period of more than 
12 hours without the need to recharge the de-
vice’s battery.

Therefore, we can conclude that the sys-
tem can monitor the patient for a long period 
of time in a high-mobility scenario. This means 
that the patient can perform routine activities 
like working, shopping, or studying without 
worrying about recharging the device’s battery.

Considering the results of MHARS’s per-
formance, we can conclude that its consump-
tion of CPU and RAM can be considered 
satisfactory and the system can run on smart-

Data gathering Pre-processing Inference
Average 1.0 4.3 3.4
Median 1 4.3 3.5
Standard Deviation 0.5 0.7 0.71
Maximum Value 1.9 5.8 5.2

Table 3. Evaluation of CPU utilization (in percentage of CPU usage).

Collection Pre-processing Inference
Average 7.9 8.8 6.8
Median 7.9 8.8 6.8
Standard Deviation 0.5 0.5 0.5
Maximum Value 8.9 9.8 7.9

Table 4. Evaluation of memory usage (in MB).

Figure 4. Battery consumption.
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phones without compromising the device per-
formance for a period of more than 12 hours. 

Related work

This section shows a comparative study 
between MHARS and other works related to 
the recognition of physical activities and the 
measurement of their intensity based on the 
use of data from mobile device sensors.

Miluzzo et al. (2008) introduce the architec-
ture and evaluation of the application called 
CenceMe. It detects activities using just a mo-
bile device, and the activities recognized are: 
sitting, standing, walking and running. The 
purpose of the CenceMe application is to pub-
licize the activities that the user does during 
the day in a social network. CenceMe is able 
to detect whether the user is talking, and this 
requires the classification of the sound signal 
of the mobile device’s microphone. The ap-
plication also has a co-location feature, that 
is, it is able to detect the proximity of people 
surrounding the user. To do this, it sends the 
device’s geo-location data to a remote serv-
er that is responsible for identifying which 
friends are geographically close to each other. 
The CenceMe activity classification process is 
performed by the Activity Classifier compo-
nent. To classify the activities it is necessary to 
obtain the mobile device’s accelerometer data 
and submit them to a preprocessing stage. 
This work calculates the average and standard 
deviation on the three axes of the acceleration 
signals. The preprocessed data are then sent 
to the classifying algorithm, which in this case 
employs the J48 algorithm (Witten and Frank, 
2005). The evaluation results present an accu-
racy of 78% of the activity detection model.

The work of Carvalho et al. (2011) introduc-
es a system for the monitoring of patients in 
home environments, which performs the rec-
ognition of activities based on the use of the 
mobile device’s accelerometer sensor data. To 
perform the activity intensity measurement, 
physiological data is also collected. This in-
formation is then stored on a server located 
at the user’s home, which is also responsible 
for the distribution of data to health profes-
sionals who are remotely assisting the patient. 
This research has focused on the detection of 
situations through the use of fuzzy rules (Rus-
sell and Norvig, 2003), which are built on the 
basis of medical guidelines to determine the 
patient’s clinical condition. The system also 
sends notifications to the professional assist-

ing the patient, so they can take the necessary 
actions in accordance with the inferred patient 
situation. The developed system is able to de-
termine three levels of intensity: resting, mod-
erate, and intense. These predefined values 
were based on the calorie waste necessary to 
perform the activities. For example, the activ-
ity of running can be considered intense, while 
walking is moderate, and lying and sitting can 
be classified as resting. To recognize the level 
of activity intensity it is necessary to collect 
data from a wearable device positioned at the 
user’s waist. Note that this system is not de-
signed to support scenarios where the patient 
may move through various environments, 
due to the fact that it needs a local server at 
the user’s home, where the activity and situa-
tion recognition is performed. This server also 
provides the communication features required 
to reach the health professionals.

Tapia et al. (2007) use acceleration and heart 
rate data for both the activity recognition and 
the measurement of its intensity. Fourteen 
different activities are recognized. For the 
evaluation of the inference model, they col-
lected acceleration data from 21 people. They 
used several preprocessing algorithms, such 
as signal entropy, energy, and variance. The 
pre-processed data was sent to the classifica-
tion algorithm C 4.5, which creates a decision 
tree. The evaluation results of the activity rec-
ognition model indicate an accuracy of 94.9%. 
To achieve this result it was necessary to fix 
to the user’s body five acceleration sensors 
in different positions and a heart rate sensor.  
A downside of this approach is that the use 
of several sensors is considered uncomfort-
able by many users. This is also an issue that 
must be taken into consideration in scenarios 
of high patient mobility.

The system proposed by Eid et al. (2013) 
is designed to be used in the monitoring of 
athletes during sports activities, but with-
out aiming to classify them. The goal of the 
system is only to measure the intensity of 
the performed activities. In this work, the 
intensity measurement is achieved based on 
the use of a heart rate sensor, using for this 
purpose an Arduino microprocessor. There 
is support for mobility scenarios considering 
different sporting environments. The system 
also provides features for inferring situations 
and making decisions. Besides the use of sen-
sors, the system also applies actuators that in-
form the athlete whether the activity is being 
performed in the correct intensity.
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Comparative analysis of related work

Table 5 presents the comparison between 
the related work and MHARS. The compari-
son took into consideration the following cri-
teria: (i) What types of sensors were used for 
activity recognition and/or intensity measure-
ment; (ii) What are the recognized activities; 
(iii) What is the algorithm/approach used by 
the inference model; (iv) The accuracy of the 
activity recognition model; (v) If the activity 
recognition is performed solely on a mobile 
device or if it requires a server; (vi) The ability 
to recognize the performed activity intensity; 
(vii) The ability to correlate context data in or-
der to determine the user’s situation and per-
form actions based on that; (viii) The ability 
to distribute data to remote servers, in order 
to make them available to health professional 
and family members; (ix) Whether data persis-
tence mechanisms are provided.

As can be noticed, most of the related works 
presented in this section are able to detect user 
activities, but some, like Carvalho et al. (2011), 
focus only on the measurement of the activ-
ity intensity. For the recognition of activities 
performed by the user, the acceleration data is 
widely used. Each work can detect a different 
set of activities, so we cannot say with preci-
sion what work is able to recognize activities 

with greater accuracy than the others. Most of 
the works did not have the concern of creat-
ing an inference model that runs on the mobile 
device. This feature allows the monitoring of 
the patient in high-mobility scenarios that are 
not restricted to the patient’s home or hospital. 
Most of the works do not provide mechanisms 
that allow the execution of actions in response 
to user’s situations. Also, only few works, such 
as Miluzzo et al. (2008), provide resources for 
data distribution and persistence.

One of MHARS’s characteristics is that the 
whole inference process is held solely on the 
mobile device, which provides a great degree 
of mobility to the user. Another positive con-
sequence is that it is able to operate efficiently 
even in case of network disconnections – which 
is common in wireless environments – since it 
does not depend on a server. MHARS was de-
signed to preserve the computer resources of 
the mobile device. To achieve this, we chose 
to use preprocessing techniques and a classi-
fication algorithm that requires little compu-
tational resources during the activity recogni-
tion process. Nevertheless, MHARS achieved 
an accuracy of more than 80%, which is con-
sidered very satisfactory. In addition, MHARS 
also measures the activity intensity level and 
provides a rich set of features that includes the 
detection of user-defined situations and the 

Work Sensors Activities Algorithm Accuracy Activity
intensity

Mobile 
device Actions

Distribu-
tion and 

persistence
Miluzzo 
et al. 
(2008)

Accelerometer
Sitting, stand-
ing, walking 
and running

Decision 
tree 78% Not 

informed Yes Yes Yes/Yes

Carvalho 
et al. 
(2011)

Accelerometer 
and other 
sensors

Does not 
apply

Not 
informed

Does not 
apply Yes No Partially No/Yes

Eid et al. 
(2013)

Heart rate and 
accelerometer

Does not 
apply Rules Does not 

apply Yes Not 
informed

Not 
informed

Partial / Not 
informed

Tapia et 
al. (2007)

Accelerometer 
and heart rate

Sitting, stan-
ding, walking, 
running, up 
and down 
stairs, car-
rying weight 
and paddling.

Decision 
tree 94.9% Yes Not 

informed
Not 

informed
Not 

informed

MHARS Heart rate and 
accelerometer 

Walking, run-
ning, standing, 
lying down, 
sitting, up and 
down stairs

IBk 83.3% Yes Yes Yes
Yes / local 

and remote 
replication

Table 5. Comparison with related work.
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provision of a decision-making engine to de-
fine an action plan (set of actions) that must be 
executed whenever relevant health situations 
are detected.

Conclusions

The main contribution of this work was 
the development of an AAL system named 
MHARS with a focus on monitoring patients 
with chronic diseases. The system performs 
the recognition of activities and the detection 
of the intensity in which they are being carried 
out by the device user. The paper presented 
MHARS’s architecture and its main compo-
nents, describing their features.

MHARS was evaluated in respect to its ca-
pacity to recognize different activities using 
accelerator sensors fixed on different positions 
in the user’s body. The results of the evaluation 
indicate that the system has achieved a satis-
factory accuracy. The amount of computation-
al resources required for running the system 
was also measured. The results indicated that 
the system can be executed on mobile devices 
like mid-range smartphones for a long period 
of time (more than 12 hours).

The comparison of the proposed system 
with related work highlights MHARS’ capaci-
ties of providing both the recognition of the 
user’s activities combined with their intensity; 
the fact that it runs solely on the mobile device, 
without needing a server infrastructure for the 
inference of the user’s activities; the support 
for several types of patient’s mobility scenar-
ios; a good accuracy of the activity recognition 
algorithm; and the provision of a rich set of 
features, that include the detection of user-de-
fined situations and the provision of a decision 
making-engine to define an action plan (set of 
actions) that must be executed whenever rel-
evant health situations are detected.

MHARS’s architecture was conceived in 
such a way that it easily allows the extensibil-
ity of the types of activities that can be recog-
nized. In order to extend the set of recognized 
activities, one must provide a file containing 
a new classification model that is loaded by 
the HURS component during its initialization. 
However, to build a new classification model 
it is necessary to perform the steps described 
in Methodology for evaluating the activity recogni-
tion accuracy, that include the construction of 
a training dataset that is used as input for the 
IBk algorithm in order to build the new clas-
sification model.

As future work we can highlight: (i) the in-
vestigation of new preprocessing techniques, 
such as acceleration energy and entropy, that 
may result in a better activity recognition accu-
racy; (i) the evaluation of other techniques for 
activity inference, such as SVN (Support Vec-
tor Machines); (iii) the evaluation of MHARS 
with patients and healthcare professionals in 
order to validate the system user experience; 
(iv) the development a graphical authoring 
tool to define situations, which would allow 
healthcare professionals to describe situations 
without requiring the support of computer 
professionals; (v) the investigation of other 
techniques for situation specification and in-
ference besides the use of ECA rules, such 
as the use of logic programming, spatial and 
temporal logic, ontologies, fuzzy logic and 
evidence theory (Ye et al., 2012). 
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